Problem Statement
Given five positive integers, their least majority multiple is the smallest positive integer that is divisible by at least three of them.
Given distinct
Definition
- Class:
- LeastMajorityMultiple
- Method:
- leastMajorityMultiple
- Parameters:
- int, int, int, int, int
- Returns:
- int
- Method signature:
- int leastMajorityMultiple(int a, int b, int c, int d, int e)
- (be sure your method is public)
Constraints
- a, b, c, d and e will each be between 1 and 100, inclusive.
- a, b, c, d and e will be distinct.
Examples
1
2
3
4
5
Returns: 4
4 is divisible by 1, 2, and 4 - the majority of the given five numbers.
7
8
4
6
5
Returns: 24
Note that the given numbers might be equal. 20 is divisible by 4, 4, and 5 - the majority of the given five numbers.
30
42
70
35
90
Returns: 210
210 is divisible by 30, 42, 70, and 35 - four out of five numbers, which is a majority.
30
45
23
26
56
Returns: 1170
3
14
15
92
65
Returns: 195
10
23
48
77
91
Returns: 5520
11
7
5
3
2
Returns: 30
83
89
97
79
73
Returns: 478661
100
99
98
97
96
Returns: 79200
56
2
28
7
8
Returns: 28
99
77
88
66
55
Returns: 792
100
99
97
89
91
Returns: 785603
99
89
100
91
97
Returns: 785603
99
89
91
100
97
Returns: 785603
99
89
91
97
100
Returns: 785603
89
99
100
91
97
Returns: 785603
89
99
91
100
97
Returns: 785603
89
99
91
97
100
Returns: 785603
89
91
99
100
97
Returns: 785603
89
91
99
97
100
Returns: 785603
89
91
97
99
100
Returns: 785603
30
29
60
23
75
Returns: 300
47
43
50
41
49
Returns: 82861
98
94
82
86
100
Returns: 165722
30
70
55
44
84
Returns: 420
64
96
36
84
48
Returns: 192
72
99
44
51
39
Returns: 792
98
52
74
76
89
Returns: 36556
89
78
100
1
99
Returns: 2574
88
77
3
44
55
Returns: 264
90
80
70
85
11
Returns: 5040
6
8
11
2
4
Returns: 8
79
74
34
42
55
Returns: 26418
29
37
66
63
62
Returns: 40194
75
76
53
98
46
Returns: 85652
31
41
88
71
94
Returns: 90241
88
47
97
70
86
Returns: 132440
62
96
59
95
67
Returns: 175584
61
46
71
67
83
Returns: 188002
92
51
71
89
82
Returns: 192372
73
43
89
76
91
Returns: 238564
74
97
59
83
87
Returns: 362378
99
71
98
65
83
Returns: 383045
89
93
83
59
82
Returns: 401554
94
99
53
83
95
Returns: 413506
89
97
94
93
100
Returns: 418300
89
79
67
98
95
Returns: 471077
85
69
97
82
89
Returns: 480930
79
85
82
97
77
Returns: 498806
89
77
97
83
79
Returns: 504889
89
97
77
86
95
Returns: 589358
89
91
83
93
92
Returns: 672217
89
87
92
91
97
Returns: 704613
91
92
97
95
89
Returns: 745108
91
89
93
97
95
Returns: 753207
100
89
99
91
97
Returns: 785603
94
95
99
91
97
Returns: 812630
98
89
97
99
95
Returns: 820135
22
10
18
67
48
Returns: 720
56
38
3
12
67
Returns: 168
68
4
17
43
62
Returns: 68
4
7
37
8
67
Returns: 56
82
12
14
24
16
Returns: 48
1
75
5
55
10
Returns: 10
30
69
2
4
1
Returns: 4
61
82
72
93
97
Returns: 91512
77
79
57
59
97
Returns: 258951
7
1
2
3
8
Returns: 6
100
99
56
23
1
Returns: 1288
2
3
99
4
5
Returns: 12
73
79
83
89
97
Returns: 478661
1
64
13
24
94
Returns: 192
2
4
8
16
32
Returns: 8
2
7
37
40
80
Returns: 80
1
3
7
14
21
Returns: 14
97
91
89
83
79
Returns: 583573
77
91
87
1
2
Returns: 154
12
3
4
1
2
Returns: 4
97
89
83
99
79
Returns: 583573
97
89
83
79
73
Returns: 478661
100
12
65
99
13
Returns: 780
91
92
93
94
95
Returns: 393484
100
1
2
3
4
Returns: 4
1
2
7
9
10
Returns: 10
1
17
2
3
19
Returns: 6
5
4
3
2
1
Returns: 4
3
5
4
7
15
Returns: 15
10
14
15
28
42
Returns: 84
1
2
10
3
4
Returns: 4
3
5
7
11
13
Returns: 105
5
10
20
97
99
Returns: 20
11
7
4
2
1
Returns: 4
98
76
88
69
99
Returns: 15048
90
91
92
93
94
Returns: 128340
95
96
97
98
99
Returns: 155232
97
89
1
2
3
Returns: 6
2
3
90
95
5
Returns: 30
5
10
15
20
25
Returns: 20
4
3
2
100
1
Returns: 4
99
100
1
2
4
Returns: 4
3
1
5
4
2
Returns: 4
100
99
98
97
32
Returns: 39200
13
2
4
1
3
Returns: 4
99
100
97
89
91
Returns: 785603
71
73
59
61
99
Returns: 255529
10
11
13
25
30
Returns: 150
96
97
98
99
100
Returns: 79200
95
97
99
91
98
Returns: 121030