Problem Statement
Let's assign a unique number to each cell in an organism's development process. For example, consider a species in which each organism starts with cell 0, which divides into cells 1 and 2. Cell 1 divides into cells 3 and 4. Cells 2, 3 and 4 do not divide. Every mature organism of this species will consist of exactly 3 cells - 2, 3 and 4.

During the development process, if we kill a cell, it will be absent in the mature form of the organism. If that cell happens to be a cell that divides, then the mature organism will be missing all of the cell's descendants as well because the cell is killed before it has a chance to divide. For example, in the organism described above, if we kill cell 1 during the development process, the mature organism will contain only cell 2.

You are given a
Definition
- Class:
- CellRemoval
- Method:
- cellsLeft
- Parameters:
- int[], int
- Returns:
- int
- Method signature:
- int cellsLeft(int[] parent, int deletedCell)
- (be sure your method is public)
Constraints
- parentCell will contain exactly N elements, where N is an odd integer between 1 and 50, inclusive.
- There will be exactly one "-1" element in parentCell.
- Every element of parentCell will be between -1 and N-1, inclusive.
- parentCell will form a binary tree.
- deletedCell will be between 0 and N-1, inclusive.
Examples
{-1}
0
Returns: 0
{-1,0,0}
0
Returns: 0
{-1,0,0}
1
Returns: 1
{1,-1,1}
2
Returns: 1
{2,2,-1}
2
Returns: 0
{-1,0,0,1,1}
2
Returns: 2
This is the example organism from the problem statement. If we kill cell 2, there will still be two cells left (3 and 4).
{-1,0,0,1,1}
1
Returns: 1
This is the example organism from the problem statement. If we kill cell 1, the only cell left will be cell 2. Cells 3 and 4 will not exist because cell 1 is their ancestor.
{-1,0,0,1,1}
0
Returns: 0
If we kill the zygote, there is nothing left.
{6,5,6,-1,3,3,5}
0
Returns: 3
{2,6,-1,4,2,6,4}
6
Returns: 2
{5,3,6,6,3,-1,5}
3
Returns: 2
{6,6,5,1,1,-1,5}
0
Returns: 3
{4,0,4,0,-1}
2
Returns: 2
{-1,4,3,0,5,0,4,5,3}
0
Returns: 0
{6,6,5,0,5,0,8,8,-1}
7
Returns: 4
{8,7,0,5,5,8,7,0,-1}
1
Returns: 4
{-1,0,6,0,1,6,1}
0
Returns: 0
{6,-1,1,2,2,1,5,6,5}
2
Returns: 3
{2,0,3,-1,0,6,3,2,6}
4
Returns: 4
{-1,0,0,2,2}
3
Returns: 2
{8,4,0,4,8,-1,5,0,5}
4
Returns: 3
{3,2,4,2,-1,7,7,4,3}
1
Returns: 4
{2,3,-1,5,5,2,3}
2
Returns: 0
{1,4,1,5,-1,4,5}
4
Returns: 0
{3,0,0,-1,3,2,2}
0
Returns: 1
{3,-1,6,1,6,3,1}
4
Returns: 3
{1,5,1,7,7,-1,5,6,6}
8
Returns: 4
{6,0,6,-1,2,2,3,3,0}
3
Returns: 0
{8,4,4,5,-1,1,8,1,5}
3
Returns: 4
{2,2,4,4,-1}
0
Returns: 2
{6,7,6,7,8,1,8,-1,1}
3
Returns: 4
{4,2,4,2,-1}
1
Returns: 2
{1,-1,0,1,0}
2
Returns: 2
{5,3,8,8,2,2,5,3,-1}
7
Returns: 4
{3,5,3,-1,0,0,5}
4
Returns: 3
{1,3,1,-1,3}
0
Returns: 2
{7,7,6,1,6,-1,5,5,1}
4
Returns: 4
{2,2,8,8,-1,6,4,6,4}
8
Returns: 2
{24,42,4,30,29,43,22,15,26,36,26,16,3,22,21,41,18,16,34,41,12,29,32,30,43,15,4,38,36,-1,24,42,18,6,21,38,6,17,32,17,3,34,12,14,14}
24
Returns: 17
{-1,4,36,24,10,29,19,31,7,0,26,31,4,18,7,6,14,24,23,0,29,14,10,35,26,1,19,1,9,36,18,6,22,35,22,9,23}
35
Returns: 13
{38,20,34,7,6,37,5,8,10,30,6,37,20,2,16,7,21,23,22,23,8,33,11,21,4,30,15,34,16,15,10,36,38,5,4,33,11,-1,22,2,36}
39
Returns: 20
{9,14,13,2,2,-1,14,9,13,11,11,5,10,5,10}
10
Returns: 5
{-1,21,24,30,46,1,16,29,30,41,18,33,26,31,12,45,29,7,16,45,27,32,41,18,35,6,9,1,19,32,22,33,0,9,6,0,12,19,21,35,46,24,31,27,26,22,7}
28
Returns: 23
{31,4,11,11,16,2,17,26,26,6,4,33,8,9,15,3,32,31,16,2,9,12,33,22,15,22,13,32,37,12,3,-1,0,17,37,0,8,13,6}
35
Returns: 19
{32,24,5,30,16,19,19,9,-1,12,31,21,14,24,4,35,8,27,8,30,21,34,35,31,18,17,9,4,17,18,12,14,16,32,5,27,34}
0
Returns: 18
{10,10,-1,5,2,8,4,5,4,8,2}
10
Returns: 4
{26,29,-1,1,2,26,15,31,20,5,29,25,4,20,25,2,3,3,27,32,6,1,14,5,32,4,14,31,6,12,27,12,15}
6
Returns: 14
{4,19,16,14,11,4,11,0,14,2,19,-1,6,7,6,3,3,16,7,2,0}
16
Returns: 7
{1,4,5,9,11,11,12,18,13,1,18,-1,9,5,13,4,3,12,3}
17
Returns: 9
{19,13,27,22,20,24,34,13,1,10,6,30,15,5,30,6,21,34,15,-1,5,25,1,21,19,20,12,24,0,25,12,10,22,0,27}
27
Returns: 10
{18,-1,24,0,31,23,2,34,2,29,5,32,29,14,10,32,22,18,1,34,28,24,31,1,20,22,14,11,23,10,28,11,5,0,20}
14
Returns: 16
{13,10,1,9,-1,1,7,4,2,2,4,9,13,10,15,7,15}
8
Returns: 8
{14,0,14,7,-1,6,10,4,5,10,0,2,5,6,4,2,7}
7
Returns: 7
{3,3,11,22,22,7,15,12,19,19,24,12,16,7,2,23,-1,14,2,23,15,24,11,16,14}
15
Returns: 11
{32,19,7,17,27,34,1,6,2,2,21,30,5,9,19,7,6,-1,33,31,30,27,9,28,16,16,24,33,38,28,5,3,21,1,17,31,24,32,34,38,3}
22
Returns: 20
{17,7,13,16,13,15,16,5,15,0,7,3,8,3,0,-1,8,5,17}
0
Returns: 8
{23,18,33,32,27,2,7,28,-1,8,13,33,1,12,11,23,11,6,28,0,27,18,1,6,32,12,7,21,8,2,13,17,17,21,0}
4
Returns: 17
{25,34,34,27,21,21,24,36,31,2,27,8,26,8,9,35,38,30,23,26,36,9,24,31,15,1,0,30,0,35,25,38,-1,18,32,1,23,2,32,18,15}
0
Returns: 18
{-1,0,1,11,15,2,8,6,0,2,11,8,1,3,3,6,15}
15
Returns: 7
{13,15,14,10,5,9,14,21,9,19,-1,16,3,19,5,22,15,3,0,16,0,22,10,13,21}
18
Returns: 12
{11,17,11,5,18,23,18,23,22,0,20,22,0,20,21,-1,8,2,5,2,21,15,15,8,17}
0
Returns: 11
{7,4,5,12,11,6,12,6,4,5,11,7,-1}
8
Returns: 6
{3,31,28,47,16,18,18,21,41,8,46,45,47,43,10,31,36,2,26,33,3,42,15,2,41,6,19,36,26,23,8,28,45,-1,25,43,19,33,46,21,16,23,44,25,6,44,42,15,10}
22
Returns: 24
{1,4,3,4,-1,1,8,3,2,8,2}
3
Returns: 2
{17,25,0,14,7,2,5,25,18,8,16,27,10,9,19,7,31,31,19,0,8,14,9,17,18,2,30,16,30,10,5,-1,27}
19
Returns: 11
{7,5,-1,11,11,10,1,10,13,7,2,2,4,1,4,5,13}
11
Returns: 6
{2,8,12,8,5,-1,7,5,4,3,12,9,4,3,9,2,7}
13
Returns: 8
{4,9,14,2,14,10,10,2,3,11,3,4,9,11,-1}
0
Returns: 7
{8,11,8,5,29,4,15,28,29,0,17,9,10,26,10,26,3,4,25,5,15,17,18,28,9,-1,25,11,0,18,3}
0
Returns: 11
{9,27,21,13,13,31,30,19,5,25,22,29,15,8,5,21,15,18,11,28,19,30,9,1,29,6,11,6,2,27,31,-1,2,8,18,25,28,24,22,1,24}
24
Returns: 19
{30,26,15,10,18,26,20,17,21,14,9,30,15,11,20,6,8,14,8,18,-1,23,3,9,10,23,11,21,3,17,6}
23
Returns: 11
{11,2,15,6,0,15,11,17,9,4,9,14,2,4,-1,14,17,0,6,3,3}
4
Returns: 8
{-1,5,0,8,14,6,2,9,0,2,5,6,8,3,3,14,9}
14
Returns: 7
{-1,0,1,13,1,6,13,3,0,2,2,8,6,8,3}
5
Returns: 7
{5,4,0,10,5,-1,8,8,0,10,4}
1
Returns: 5
{21,25,28,29,31,21,13,29,10,8,28,16,32,0,17,26,10,18,31,18,19,12,8,17,13,16,0,19,32,25,26,12,-1}
1
Returns: 16
{3,8,9,2,6,6,9,8,2,-1,3}
8
Returns: 4
{5,19,4,37,5,33,29,11,4,38,11,29,30,17,34,33,30,20,8,18,8,18,0,20,26,37,2,19,34,0,25,25,38,-1,6,26,17,2,6}
37
Returns: 16
{17,21,-1,30,31,2,35,29,4,42,33,36,4,29,45,32,8,40,24,48,45,24,27,25,5,42,14,14,36,21,25,2,40,5,8,30,37,20,35,48,20,37,33,32,41,31,17,41,27}
13
Returns: 24
{1,4,-1,26,2,1,7,20,6,10,3,3,8,2,20,6,17,26,14,10,13,4,14,17,7,8,13}
13
Returns: 3
{28,6,0,16,9,18,27,15,13,34,6,18,19,-1,9,19,8,0,1,32,4,1,4,28,32,34,27,13,15,26,3,26,8,3,16}
8
Returns: 6
{26,18,29,28,28,16,29,19,26,-1,8,9,11,31,16,13,32,10,19,12,10,32,0,13,31,8,12,24,18,11,9,0,24}
24
Returns: 13
{11,37,24,29,19,14,24,3,39,27,11,13,33,4,30,-1,21,3,15,39,40,35,29,14,8,18,20,18,21,25,15,20,4,35,13,19,37,40,25,30,8,27,33}
15
Returns: 0
{19,15,18,0,16,24,29,39,11,29,19,23,35,10,37,14,30,36,26,41,24,11,33,26,39,37,14,32,33,18,25,4,36,23,35,15,10,-1,4,41,30,25,16,32,0}
2
Returns: 22
{10,6,7,15,15,10,0,6,5,3,-1,5,8,7,0,8,3}
7
Returns: 7
{9,27,29,25,2,6,0,19,27,20,7,2,19,0,3,7,21,6,5,23,-1,23,3,20,21,5,29,18,18,9,25}
16
Returns: 15
{16,-1,5,17,12,21,22,13,23,23,17,24,5,1,12,19,22,25,10,30,10,13,24,30,19,1,16,21,2,2,25}
30
Returns: 9
{10,5,10,0,0,3,3,6,6,5,-1}
7
Returns: 5
{25,26,34,16,37,31,23,17,18,38,1,18,38,16,23,28,29,28,-1,1,32,32,29,17,3,22,11,25,22,11,3,13,8,37,13,8,34,31,26}
34
Returns: 18
{-1,38,27,26,25,0,1,23,1,36,4,7,5,11,29,5,7,29,38,13,4,27,16,18,23,22,22,24,24,26,31,18,31,13,36,25,11,16,0}
23
Returns: 6
{1,12,19,1,2,7,22,2,13,0,22,9,17,17,12,13,7,19,4,-1,4,0,9}
3
Returns: 11
{7,11,21,12,22,6,16,6,9,21,7,12,0,23,1,5,-1,5,9,16,0,23,11,1,22}
16
Returns: 0
{31,31,3,32,30,18,40,33,10,20,37,40,33,22,26,22,5,25,37,41,11,34,26,27,41,28,10,28,32,30,18,3,8,25,8,27,39,-1,11,5,39,34,20}
14
Returns: 21
{13,3,18,34,6,30,3,32,37,21,40,23,39,31,0,24,37,0,38,22,22,23,24,12,6,21,40,1,13,35,38,32,34,12,-1,30,1,35,39,31,18}
27
Returns: 20
{42,34,28,48,7,12,33,20,30,16,32,16,6,32,5,39,-1,20,5,23,12,33,9,6,40,28,9,26,34,7,27,11,27,30,11,48,39,42,40,19,3,10,10,3,19,41,41,23,26}
17
Returns: 24
{30,27,7,30,18,32,2,27,4,8,6,2,31,22,7,8,17,4,-1,25,6,19,32,16,16,18,29,17,29,19,31,22,25}
27
Returns: 12
{11,9,16,8,8,9,15,16,11,12,15,14,14,2,2,12,-1}
6
Returns: 8
{2,33,3,14,8,7,3,21,2,13,31,30,36,6,-1,9,34,13,6,4,9,26,34,21,29,29,8,33,7,26,36,30,31,0,14,4,0}
18
Returns: 18
{2,5,3,1,46,22,2,39,44,16,4,-1,44,5,28,3,19,31,8,35,16,39,11,32,41,30,17,1,38,17,32,12,8,31,35,12,22,11,36,46,30,38,19,4,28,36,41}
11
Returns: 0
{5,7,28,17,5,10,20,9,25,14,19,27,19,11,26,7,10,22,20,28,9,11,25,22,27,14,-1,17,26}
8
Returns: 14
{20,25,5,18,16,8,1,20,3,11,25,7,18,2,32,13,3,0,-1,16,8,32,0,13,1,5,7,15,2,11,17,15,17}
24
Returns: 16
{9,19,22,30,16,6,13,18,19,31,2,23,17,-1,23,24,11,29,31,18,6,29,11,13,14,30,24,2,17,22,9,14,16}
15
Returns: 16
{10,5,3,10,5,9,9,12,12,3,11,-1,11}
0
Returns: 6
{7,23,18,19,12,14,2,13,12,8,13,3,0,-1,0,11,8,14,11,7,2,19,18,3,23}
15
Returns: 12
{32,6,39,28,28,15,5,23,20,34,3,38,3,29,39,4,23,15,9,13,13,36,31,32,20,35,18,12,34,-1,31,18,36,38,29,9,4,5,12,35,6}
18
Returns: 18
{3,10,12,-1,17,13,42,0,46,3,24,9,40,17,37,39,29,11,13,43,34,2,21,40,23,42,36,23,34,21,37,6,10,39,31,12,31,46,6,43,9,29,0,11,36,2,24}
18
Returns: 23
{-1,8,11,26,14,12,8,10,30,30,0,13,10,36,3,35,7,11,26,7,32,25,28,20,35,12,36,14,13,25,32,16,0,28,16,3,20}
22
Returns: 18
{11,9,0,12,7,10,12,1,6,-1,24,15,23,15,24,9,23,10,7,8,1,0,6,11,8}
15
Returns: 3
{-1,0,0,2,2,4,4,6,6}
4
Returns: 2
{26,2,32,36,40,19,43,24,30,13,21,14,24,21,19,4,30,10,44,12,7,32,17,43, 35,18,7,36,10,16,5,38,35,4,13,-1,16,26,1,12,2,5,18,40,1,17,38,44,14}
24
Returns: 14
{30,-1,18,45,5,1,23,4,42,6,47,33,27,23,33,18,34,0,34,32,6,35,20,37,44,27,7,2,4,42,3,7,3,20,5,45,30,10,2,44,43,0,10,1,35,47,32,43,37}
2
Returns: 22
{28,35,9,43,32,12,38,5,1,22,6,9,43,41,21,18,34,20,14,3,4,-1,45,6,2,28,18,5,3,26,4,21,26,31,45,12,20,34,35,1,2,38,10,14,22,32,41,10,31}
42
Returns: 24
{29,22,29,33,6,35,10,43,20,7,14,27,4,39,1,18,18,24,8,2,32,41,38,44,33,35,2,24,27,20,4,45,42,41,1,6,45,32,-1,14,39,43,38,42,22,44,7,10,8}
11
Returns: 24
{27,16,8,29,0,39,46,43,-1,3,4,43,27,7,41,46,13,30,44,11,13,24,25,4,8,21,24,26,2,7,26,21,17,16,31,29,30,31,39,25,11,28,0,2,41,3,44,28,17}
46
Returns: 23
{-1, 0, 0, 1, 1 }
1
Returns: 1
{26, 2, 32, 36, 40, 19, 43, 24, 30, 13, 21, 14, 24, 21, 19, 4, 30, 10, 44, 12, 7, 32, 17, 43, 35, 18, 7, 36, 10, 16, 5, 38, 35, 4, 13, -1, 16, 26, 1, 12, 2, 5, 18, 40, 1, 17, 38, 44, 14 }
24
Returns: 14
{1, -1, 1 }
0
Returns: 1
{26, 2, 32, 36, 40, 19, 43, 24, 30, 13, 21, 14, 24, 21, 19, 4, 30, 10, 44, 12, 7, 32, 17, 43, 35, 18, 7, 36, 10, 16, 5, 38, 35, 4, 13, -1, 16, 26, 1, 12, 2, 5, 18, 40, 1, 17, 38, 44, 14 }
35
Returns: 0
{2, 2, -1 }
2
Returns: 0
{-1, 3, 3, 0, 0 }
3
Returns: 1
{1, -1, 1 }
2
Returns: 1
{26, 2, 32, 36, 40, 19, 43, 24, 30, 13, 21, 14, 24, 21, 19, 4, 30, 10, 44, 12, 7, 32, 17, 43, 35, 18, 7, 36, 10, 16, 5, 38, 35, 4, 13, -1, 16, 26, 1, 12, 2, 5, 18, 40, 1, 17, 38, 44, 14 }
0
Returns: 24
{-1, 0, 0 }
1
Returns: 1
{2, 2, 4, 4, -1 }
4
Returns: 0
{1, -1, 1, 0, 0 }
0
Returns: 1