Statistics

Problem Statement for "MegaCoolNumbersEasy"

Problem Statement

A positive integer is called a mega cool number if its digits form an arithmetic progression. An arithmetic progression is a sequence of numbers in which the difference between any two consecutive numbers is the same. Return the number of mega cool numbers between 1 and N, inclusive.

Definition

Class:
MegaCoolNumbersEasy
Method:
count
Parameters:
int
Returns:
int
Method signature:
int count(int N)
(be sure your method is public)

Constraints

  • N will be between 1 and 1,000, inclusive.

Examples

  1. 1

    Returns: 1

    The only mega cool number not greater than 1 is 1.

  2. 110

    Returns: 99

    All numbers between 1 and 99 are mega cool.

  3. 500

    Returns: 119

  4. 209

    Returns: 104

  5. 2

    Returns: 2

  6. 6

    Returns: 6

  7. 9

    Returns: 9

  8. 10

    Returns: 10

  9. 13

    Returns: 13

  10. 33

    Returns: 33

  11. 44

    Returns: 44

  12. 95

    Returns: 95

  13. 68

    Returns: 68

  14. 99

    Returns: 99

  15. 101

    Returns: 99

  16. 110

    Returns: 99

  17. 113

    Returns: 100

  18. 122

    Returns: 100

  19. 124

    Returns: 101

  20. 200

    Returns: 104

  21. 210

    Returns: 105

  22. 212

    Returns: 105

  23. 223

    Returns: 106

  24. 233

    Returns: 106

  25. 246

    Returns: 108

  26. 399

    Returns: 114

  27. 401

    Returns: 114

  28. 406

    Returns: 114

  29. 444

    Returns: 117

  30. 525

    Returns: 119

  31. 533

    Returns: 120

  32. 537

    Returns: 120

  33. 541

    Returns: 120

  34. 578

    Returns: 123

  35. 587

    Returns: 124

  36. 599

    Returns: 124

  37. 600

    Returns: 124

  38. 601

    Returns: 124

  39. 603

    Returns: 124

  40. 612

    Returns: 124

  41. 666

    Returns: 128

  42. 669

    Returns: 128

  43. 687

    Returns: 129

  44. 698

    Returns: 129

  45. 699

    Returns: 129

  46. 700

    Returns: 129

  47. 703

    Returns: 129

  48. 705

    Returns: 129

  49. 709

    Returns: 129

  50. 734

    Returns: 129

  51. 743

    Returns: 130

  52. 744

    Returns: 130

  53. 746

    Returns: 130

  54. 764

    Returns: 131

  55. 777

    Returns: 133

  56. 788

    Returns: 133

  57. 799

    Returns: 134

  58. 801

    Returns: 134

  59. 804

    Returns: 134

  60. 809

    Returns: 134

  61. 838

    Returns: 134

  62. 840

    Returns: 135

  63. 843

    Returns: 135

  64. 844

    Returns: 135

  65. 888

    Returns: 139

  66. 889

    Returns: 139

  67. 890

    Returns: 139

  68. 891

    Returns: 139

  69. 895

    Returns: 139

  70. 901

    Returns: 139

  71. 906

    Returns: 139

  72. 908

    Returns: 139

  73. 935

    Returns: 139

  74. 946

    Returns: 139

  75. 964

    Returns: 141

  76. 970

    Returns: 141

  77. 971

    Returns: 141

  78. 975

    Returns: 142

  79. 999

    Returns: 144

  80. 1000

    Returns: 144

  81. 123

    Returns: 101

  82. 5

    Returns: 5

  83. 4

    Returns: 4

  84. 127

    Returns: 101

  85. 111

    Returns: 100

  86. 789

    Returns: 134

  87. 100

    Returns: 99


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: