Problem Statement
You are given
- each selected integer is between lower and upper, inclusive;
- no two selected integers are similar.
Definition
- Class:
- TheSimilarNumbers
- Method:
- find
- Parameters:
- int, int
- Returns:
- int
- Method signature:
- int find(int lower, int upper)
- (be sure your method is public)
Constraints
- upper will be between 1 and 1,000,000, inclusive.
- lower will be between 1 and upper, inclusive.
Examples
1
10
Returns: 1
Any two integers between 1 and 10 are similar. Therefore you may select only 1 number.
5
511
Returns: 3
You can select 51, 5, and 511.
5
4747
Returns: 3
1
1000000
Returns: 6
10
10110
Returns: 3
1
1
Returns: 1
1000000
1000000
Returns: 1
491273
842398
Returns: 1
849859
958925
Returns: 1
67803
771363
Returns: 2
184892
391907
Returns: 1
75799
256150
Returns: 1
268944
342402
Returns: 1
228640
894352
Returns: 1
903885
908656
Returns: 1
292588
414271
Returns: 1
852057
889141
Returns: 1
73955
739551
Returns: 2
73955
739550
Returns: 1
40363
403631
Returns: 2
40363
403630
Returns: 1
14367
143671
Returns: 2
14367
143670
Returns: 1
844
84411
Returns: 3
844
84410
Returns: 2
6646
664611
Returns: 3
6646
664610
Returns: 2
937
93711
Returns: 3
937
93710
Returns: 2
883
883111
Returns: 4
883
883110
Returns: 3
842
842111
Returns: 4
842
842110
Returns: 3
314
314111
Returns: 4
314
314110
Returns: 3
74
741111
Returns: 5
74
741110
Returns: 4
14
141111
Returns: 5
14
141110
Returns: 4
53
531111
Returns: 5
53
531110
Returns: 4
4
411111
Returns: 6
4
411110
Returns: 5
6
611111
Returns: 6
6
611110
Returns: 5
2
211111
Returns: 6
2
211110
Returns: 5
2
20
Returns: 1
100000
100000
Returns: 1
2
2
Returns: 1
1
11
Returns: 2
1
8
Returns: 1
5
5
Returns: 1
1
9
Returns: 1
2
4
Returns: 1
10
101
Returns: 2
1
11122
Returns: 5
55
1000000
Returns: 5
5
51
Returns: 2
6
6
Returns: 1
10
10
Returns: 1
500
1500
Returns: 1
2
204
Returns: 2
1
99999
Returns: 5
3
11
Returns: 1
10
11
Returns: 1
6
7
Returns: 1
5
510
Returns: 2
1
111
Returns: 3
5
500
Returns: 2
10
100
Returns: 1
6
611
Returns: 3
1
110
Returns: 2
4
411
Returns: 3
5000
5000
Returns: 1
1
11111
Returns: 5
1
2
Returns: 1