Statistics

Problem Statement for "TheNumbersWithLuckyLastDigit"

Problem Statement

John believes that the digits 4 and 7 are lucky, and all other digits are unlucky. A positive integer is called a lucky number if its last digit is lucky. For example, 4, 14 and 207 are lucky numbers, while 40, 741 and 3 are not lucky numbers. John would like to represent the int n as a sum of only lucky numbers, and he would like to do this using the minimal possible number of summands. Return the number of summands in the representation, or -1 if it is impossible to achieve the goal.

Definition

Class:
TheNumbersWithLuckyLastDigit
Method:
find
Parameters:
int
Returns:
int
Method signature:
int find(int n)
(be sure your method is public)

Constraints

  • n will be between 1 and 1,000,000,000, inclusive.

Examples

  1. 99

    Returns: 4

    One of the possible representations is 99=14+24+27+34.

  2. 11

    Returns: 2

    11=4+7.

  3. 13

    Returns: -1

    It is impossible to achieve the goal.

  4. 1234567

    Returns: 1

  5. 1

    Returns: -1

  6. 2

    Returns: -1

  7. 3

    Returns: -1

  8. 4

    Returns: 1

  9. 5

    Returns: -1

  10. 6

    Returns: -1

  11. 7

    Returns: 1

  12. 8

    Returns: 2

  13. 9

    Returns: -1

  14. 10

    Returns: -1

  15. 11

    Returns: 2

  16. 12

    Returns: 3

  17. 13

    Returns: -1

  18. 14

    Returns: 1

  19. 15

    Returns: 3

  20. 16

    Returns: 4

  21. 17

    Returns: 1

  22. 18

    Returns: 2

  23. 19

    Returns: 4

  24. 20

    Returns: 5

  25. 21

    Returns: 2

  26. 22

    Returns: 3

  27. 23

    Returns: 5

  28. 24

    Returns: 1

  29. 25

    Returns: 3

  30. 26

    Returns: 4

  31. 27

    Returns: 1

  32. 28

    Returns: 2

  33. 29

    Returns: 4

  34. 30

    Returns: 5

  35. 757148

    Returns: 2

  36. 167851001

    Returns: 2

  37. 301413357

    Returns: 1

  38. 336971125

    Returns: 3

  39. 659598369

    Returns: 4

  40. 160567226

    Returns: 4

  41. 391749388

    Returns: 2

  42. 4890852

    Returns: 3

  43. 35766291

    Returns: 2

  44. 26239573

    Returns: 5

  45. 473038165

    Returns: 3

  46. 1000000000

    Returns: 5

  47. 999999999

    Returns: 4

  48. 42

    Returns: 3

  49. 100000000

    Returns: 5

  50. 909090900

    Returns: 5

  51. 100

    Returns: 5

  52. 50

    Returns: 5

  53. 10000

    Returns: 5

  54. 900

    Returns: 5

  55. 336

    Returns: 4

  56. 45

    Returns: 3

  57. 1000000

    Returns: 5

  58. 33

    Returns: 5

  59. 281

    Returns: 2

  60. 10000000

    Returns: 5

  61. 1555555

    Returns: 3

  62. 88

    Returns: 2

  63. 46

    Returns: 4

  64. 1001

    Returns: 2

  65. 20000

    Returns: 5

  66. 60

    Returns: 5

  67. 103

    Returns: 5

  68. 53

    Returns: 5

  69. 784783209

    Returns: 4

  70. 1000

    Returns: 5

  71. 2800

    Returns: 5

  72. 36

    Returns: 4

  73. 155555555

    Returns: 3

  74. 200

    Returns: 5

  75. 35

    Returns: 3

  76. 70

    Returns: 5

  77. 110

    Returns: 5

  78. 222

    Returns: 3

  79. 87

    Returns: 1

  80. 999999992

    Returns: 3

  81. 999999998

    Returns: 2

  82. 55

    Returns: 3

  83. 300000

    Returns: 5

  84. 9921

    Returns: 2

  85. 2000

    Returns: 5

  86. 38

    Returns: 2

  87. 220

    Returns: 5

  88. 952250

    Returns: 5

  89. 688606352

    Returns: 3


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: