Problem Statement
Manao knows that he can only afford to sell microwaves at a price no less than minPrice, and believes that customers will only buy the microwaves if they cost no more than maxPrice. Help Manao by finding an integer between minPrice and maxPrice, inclusive, which has the maximum possible number of trailing 9's. If there are several candidates, return the largest one.
Definition
- Class:
- MicrowaveSelling
- Method:
- mostAttractivePrice
- Parameters:
- int, int
- Returns:
- int
- Method signature:
- int mostAttractivePrice(int minPrice, int maxPrice)
- (be sure your method is public)
Constraints
- minPrice will be between 1 and 1,000,000, inclusive.
- maxPrice will be between minPrice and 1,000,000, inclusive.
Examples
460
680
Returns: 599
Of all the prices between 460 and 680, 499 and 599 have the maximum number of trailing 9's. Since 599 is larger, it is Manao's price of choice.
10
1000
Returns: 999
999 has three trailing 9's, and no other number in the given range has this property.
1255
2999
Returns: 2999
Note that 2999 is still an acceptable price.
20
25
Returns: 25
There are no numbers with trailing 9's between 20 and 25.
1
1000000
Returns: 999999
1
999999
Returns: 999999
1
999998
Returns: 899999
10
1000000
Returns: 999999
1
1
Returns: 1
999999
999999
Returns: 999999
6
11
Returns: 9
6
315279
Returns: 299999
79
100
Returns: 99
770
4520
Returns: 3999
1024
2048
Returns: 1999
3310
3358
Returns: 3349
9999
9999
Returns: 9999
9999
10000
Returns: 9999
99091
107993
Returns: 99999
3019
80000
Returns: 79999
60020
499997
Returns: 399999
18
200318
Returns: 199999
990000
990000
Returns: 990000
770709
790334
Returns: 789999
10000
199998
Returns: 99999
527186
527189
Returns: 527189
999299
999369
Returns: 999299
895992
896005
Returns: 895999
667202
983878
Returns: 899999
400
40000
Returns: 39999
81592
673912
Returns: 599999
56097
74992
Returns: 69999
785785
800020
Returns: 799999
17
6998
Returns: 5999
3
999991
Returns: 899999
80
1000000
Returns: 999999
666666
666666
Returns: 666666
999
90999
Returns: 89999
18
21
Returns: 19
100
198
Returns: 189
12330
12345
Returns: 12339
899
909
Returns: 899
1
9989
Returns: 8999
99
909
Returns: 899
8999
9099
Returns: 8999
1
99998
Returns: 89999
1
9100
Returns: 8999
1
8
Returns: 8
9
18
Returns: 9
989
991
Returns: 989
19
90
Returns: 89
1
10
Returns: 9
1
10897
Returns: 9999
9
10
Returns: 9
1088
1090
Returns: 1089
89
90
Returns: 89
20000
29099
Returns: 28999
21
28
Returns: 28
2
3
Returns: 3
898
909
Returns: 899
8
16
Returns: 9
1
9991
Returns: 8999
1000
3000
Returns: 2999
2000
2989
Returns: 2899
9
90
Returns: 89
998
9100
Returns: 8999
1
9099
Returns: 8999
800
910
Returns: 899
1
919
Returns: 899
109
110
Returns: 109
98
110
Returns: 99
2000
2998
Returns: 2899
89
92
Returns: 89
4888
5888
Returns: 4999
1
9998
Returns: 8999
108
109
Returns: 109
89
91
Returns: 89
1
909
Returns: 899
199
910
Returns: 899
3999
4600
Returns: 3999
1
9909
Returns: 8999
19
20
Returns: 19
1088
1092
Returns: 1089
8099
8909
Returns: 8899
965
970
Returns: 969
1888
2888
Returns: 1999
899
990
Returns: 899
10
12099
Returns: 9999
1
9899
Returns: 8999
79
98
Returns: 89
1
909999
Returns: 899999
881
991
Returns: 899
9
909
Returns: 899
199
909
Returns: 899
8100
9099
Returns: 8999
8999
9998
Returns: 8999
8878
8888
Returns: 8879
1000
9998
Returns: 8999
1099
1909
Returns: 1899
8998
9991
Returns: 8999
1
92000
Returns: 89999
2003
2010
Returns: 2009
9
100
Returns: 99
8999
9990
Returns: 8999
900
998
Returns: 989
199
991
Returns: 899
9000
9998
Returns: 9899
9980
9995
Returns: 9989
800
980
Returns: 899
10
20
Returns: 19
8899
8909
Returns: 8899
9909
9910
Returns: 9909
1
1999
Returns: 1999
7950
7960
Returns: 7959
9989
9990
Returns: 9989
99
99
Returns: 99
1236
1526
Returns: 1499
18999
999990
Returns: 899999
99989
99990
Returns: 99989
989
990
Returns: 989
19
24
Returns: 19