Statistics

Problem Statement for "AllButOneDivisor"

Problem Statement

You are given a int[] divisors containing K elements. Find a positive integer n such that exactly K-1 elements of divisors are exact divisors of n. If there are several such numbers n, return the smallest possible one. If no such number n exists, return -1 instead.

Definition

Class:
AllButOneDivisor
Method:
getMinimum
Parameters:
int[]
Returns:
int
Method signature:
int getMinimum(int[] divisors)
(be sure your method is public)

Notes

  • A number x is an exact divisor of y if y divided by x yields an integer result.
  • If x is an exact divisor of y then we call y a multiple of x.

Constraints

  • divisors will contain between 2 and 6 elements, inclusive.
  • Each element of divisors will be distinct.
  • Each element of divisors will be between 1 and 15, inclusive.

Examples

  1. {2,3,5}

    Returns: 6

    There are many possible values for n in this case. For example: 6, 15, 75 and 12. 6 is the smallest of them.

  2. {2,4,3,9}

    Returns: 12

  3. {3,2,6}

    Returns: -1

    Every multiple of 3 and 2 is also a multiple of 6. Every multiple of 6 is also a multiple of 2 and 3. Therefore, a number that is a multiple of exactly 2 out of the three elements in this array cannot exist.

  4. {6,7,8,9,10}

    Returns: 360

  5. {10,6,15}

    Returns: -1

  6. {10,11,12,13,14,15}

    Returns: 4620

  7. {2,4,6,3}

    Returns: 6

  8. {8,9,5,7,11,13}

    Returns: 27720

  9. {14,15,6}

    Returns: 30

  10. {7,14,2}

    Returns: -1

  11. {4,3,1,12}

    Returns: -1

  12. {1,2}

    Returns: 1

  13. {1,2,3}

    Returns: 2

  14. {15,14,1}

    Returns: 14

  15. {15,14,13,1,12}

    Returns: 420

  16. {2,4,8,6,3}

    Returns: 12

  17. {2,4,11,6,3}

    Returns: 12

  18. {2,4,13,6,3}

    Returns: 12

  19. {8,9,15,7,11,13}

    Returns: 27720

  20. {2,3,5,6}

    Returns: 6

    It is best to remove 5 instead of 6 (the maximum)

  21. {1,3,2,5,4}

    Returns: 12

  22. {4,1,5,3,2}

    Returns: 12

  23. {3,4,2,5,1}

    Returns: 12

  24. {2,4,3,1,5}

    Returns: 12

  25. {2,5,6,4,1,3}

    Returns: 12

  26. {3,1,2,4}

    Returns: 4

  27. {8,11,5}

    Returns: 40

  28. {14,1,6,10,5,9}

    Returns: 90

  29. {8,14,5,11,7}

    Returns: 280

  30. {13,7,14,15,6,9}

    Returns: 630

  31. {9,3,4,1,5}

    Returns: 36

  32. {11,1}

    Returns: 1

  33. {1,4,12,3,13}

    Returns: 12

  34. {4,2}

    Returns: 2

  35. {5,8,14,4}

    Returns: 40

  36. {7,13,14}

    Returns: 14

  37. {14,15}

    Returns: 14

  38. {5,13,10,9,7,2}

    Returns: 630

  39. {1,2,12,13,11}

    Returns: 132

  40. {2,3,11,12,14,1}

    Returns: 84

  41. {9,14,5}

    Returns: 45

  42. {11,1,9,2}

    Returns: 18

  43. {9,8,5,2}

    Returns: 40

  44. {4,6}

    Returns: 4

  45. {14,6}

    Returns: 6

  46. {13,1,5,9,7,4}

    Returns: 1260

  47. {11,8,15,6,4}

    Returns: 120

  48. {4,12,11}

    Returns: 12

  49. {7,5,9,1,11,6}

    Returns: 630

  50. {4,9,10,3,12}

    Returns: 36

  51. {4,10,13,12,9}

    Returns: 180

  52. {14,4,12,13,2}

    Returns: 84

  53. {9,2,14}

    Returns: 14

  54. {6,3,13,7}

    Returns: 42

  55. {2,14,4}

    Returns: 4

  56. {5,3,7,13,4,9}

    Returns: 1260

  57. {7,8,11,4}

    Returns: 56

  58. {8,10}

    Returns: 8

  59. {4,15,12,3}

    Returns: 12

  60. {4,11,10,9}

    Returns: 180

  61. {7,6,8}

    Returns: 24

  62. {2,7,11,4}

    Returns: 28

  63. {7,1,10,15,13}

    Returns: 210

  64. {4,10,14,6,9}

    Returns: 180

  65. {11,10,13,9,3,5}

    Returns: 990

  66. {2,15,12}

    Returns: 12

  67. {10,1,2,3}

    Returns: 6

  68. {2,3,6,11}

    Returns: 6

  69. {2,10,12,9,8}

    Returns: 72

  70. {2,11,15,5}

    Returns: 30

  71. {11,10,14,4,2}

    Returns: 140

  72. {2,8,10,3,13,7}

    Returns: 840

  73. {9,7,3,11,14}

    Returns: 126

  74. {6,10,5,3,1}

    Returns: -1

  75. {3,9,5,4}

    Returns: 36

  76. {14,2,4,11,7,6}

    Returns: 84

  77. {12,9,4,5}

    Returns: 36

  78. {15,2,9,5}

    Returns: 30

  79. {8,11,7,10,1}

    Returns: 280

  80. {12,14,13,4}

    Returns: 84

  81. {8,7,2,3,1,10}

    Returns: 120

  82. {10,12,7,14,9,5}

    Returns: 420

  83. {14,7,9,11,8}

    Returns: 504

  84. {1,9,7,4,2,14}

    Returns: 28

  85. {1,15,9,5,3,11}

    Returns: 45

  86. {11,6,13,1}

    Returns: 66

  87. {10,11,14,12}

    Returns: 420

  88. {9,7,12,14,10}

    Returns: 252

  89. {15,7,12,10,11,14}

    Returns: 420

  90. {9,15,13,11,12,10}

    Returns: 1980

  91. {15,11,8,14}

    Returns: 616

  92. {14,8,9,7,13}

    Returns: 504

  93. {13,7,12,9,15,14}

    Returns: 1260

  94. {11,7,13,14,12,15}

    Returns: 4620

  95. {12,7,15,9,13,8}

    Returns: 2520

  96. {11,13,15,14}

    Returns: 2002

  97. {11,14,13,9,12,10}

    Returns: 13860

  98. {9,15,12,13,11,8}

    Returns: 3960

  99. {12,8,11,9,13,15}

    Returns: 3960

  100. {8,10,14,11,12}

    Returns: 840

  101. {10,15,14,8}

    Returns: 120

  102. {15,13,9,11}

    Returns: 495

  103. {10,14,8,11}

    Returns: 280

  104. {14,11,9,13}

    Returns: 1287

  105. {7,9,13,11}

    Returns: 693

  106. {12,8,11,14,13,15}

    Returns: 9240

  107. {7, 13, 11, 14, 9 }

    Returns: 1386

  108. {1, 2 }

    Returns: 1

  109. {1, 3, 4 }

    Returns: 3

  110. {2, 3, 7 }

    Returns: 6

  111. {2, 4 }

    Returns: 2

  112. {2, 3, 5, 15 }

    Returns: 15

  113. {5, 10, 13 }

    Returns: 10

  114. {3, 2, 6 }

    Returns: -1

  115. {10, 2, 3 }

    Returns: 6

  116. {5, 7, 8, 9, 11, 13 }

    Returns: 27720

  117. {2, 3, 4, 6, 7 }

    Returns: 12

  118. {5, 7 }

    Returns: 5

  119. {6, 7, 15 }

    Returns: 30

  120. {4, 5, 6 }

    Returns: 12

  121. {3, 6, 13 }

    Returns: 6

  122. {1, 2, 4, 8 }

    Returns: 4

  123. {13, 11, 9, 8, 7, 5 }

    Returns: 27720

  124. {1, 5 }

    Returns: 1

  125. {2, 4, 8 }

    Returns: 4

  126. {2, 3 }

    Returns: 2

  127. {6, 7, 8, 9, 10 }

    Returns: 360

  128. {13, 11, 7, 5, 9, 4 }

    Returns: 13860

  129. {6, 10, 15, 14 }

    Returns: 30

  130. {3, 5, 7, 11, 13 }

    Returns: 1155

  131. {3, 13, 2 }

    Returns: 6

  132. {2, 1 }

    Returns: 1

  133. {7, 10, 15 }

    Returns: 30

  134. {15, 14, 13, 12, 11, 10 }

    Returns: 4620


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: