Statistics

Problem Statement for "PalindromizationDiv2"

Problem Statement

Little Arthur loves numbers, especially palindromic ones. A palindromic string is a string that reads the same both forwards and backwards. A palindromic number is a non-negative integer such that its decimal representation (without insignificant leading zeros) is a palindromic string. For example, 12321, 101, 9, and 0 are palindromic numbers but 2011, 509, and 40 are not.

Arthur has a number X and he would like to palindromize it. Palindromization of a number means adding or subtracting some value to obtain a palindromic number. For example, one possible way to palindromize number 25 is adding 8 resulting in number 33, which is palindromic.

Unfortunately Arthur cannot palindromize numbers for free. The cost of palindromization in dollars is equal to the value added or subtracted. In the previous example Arthur would have to pay 8 dollars.

Of course Arthur would like to palindromize X spending the least amount of money. Given X return the minimum amount of money Arthur needs.

Definition

Class:
PalindromizationDiv2
Method:
getMinimumCost
Parameters:
int
Returns:
int
Method signature:
int getMinimumCost(int X)
(be sure your method is public)

Constraints

  • X will be between 0 and 100000 (10^5), inclusive.

Examples

  1. 25

    Returns: 3

    In the problem statement it is shown that adding 8 to 25 results in a palindromic number 33. However, this is not the cheapest way to palindromize 25. Arthur can subtract 3 to obtain a number 22 which is also palindromic.

  2. 12321

    Returns: 0

    Already a palindromic number.

  3. 40

    Returns: 4

  4. 2011

    Returns: 9

  5. 0

    Returns: 0

  6. 100000

    Returns: 1

  7. 1

    Returns: 0

  8. 2

    Returns: 0

  9. 3

    Returns: 0

  10. 4

    Returns: 0

  11. 5

    Returns: 0

  12. 6

    Returns: 0

  13. 7

    Returns: 0

  14. 8

    Returns: 0

  15. 9

    Returns: 0

  16. 11

    Returns: 0

  17. 12

    Returns: 1

  18. 99999

    Returns: 0

  19. 99998

    Returns: 1

  20. 99900

    Returns: 1

  21. 1054

    Returns: 53

  22. 1053

    Returns: 52

  23. 1056

    Returns: 55

  24. 1057

    Returns: 54

  25. 1058

    Returns: 53

  26. 4499

    Returns: 55

  27. 5500

    Returns: 55

  28. 6611

    Returns: 55

  29. 9944

    Returns: 55

  30. 1606

    Returns: 55

  31. 2607

    Returns: 55

  32. 3938

    Returns: 55

  33. 4059

    Returns: 55

  34. 5940

    Returns: 55

  35. 6391

    Returns: 55

  36. 7833

    Returns: 54

  37. 8612

    Returns: 54

  38. 9065

    Returns: 54

  39. 9998

    Returns: 1

  40. 9999

    Returns: 0

  41. 10000

    Returns: 1

  42. 10954

    Returns: 53

  43. 11965

    Returns: 54

  44. 23988

    Returns: 54

  45. 33985

    Returns: 52

  46. 34998

    Returns: 55

  47. 44999

    Returns: 55

  48. 46010

    Returns: 54

  49. 55000

    Returns: 55

  50. 65001

    Returns: 55

  51. 73990

    Returns: 53

  52. 83993

    Returns: 55

  53. 85001

    Returns: 53

  54. 86013

    Returns: 55

  55. 90964

    Returns: 55

  56. 98034

    Returns: 55

  57. 99043

    Returns: 54

  58. 99044

    Returns: 55

  59. 99045

    Returns: 54

  60. 22325

    Returns: 3

  61. 24691

    Returns: 49

  62. 29213

    Returns: 21

  63. 89912

    Returns: 14

  64. 52431

    Returns: 6

  65. 22171

    Returns: 49

  66. 51289

    Returns: 26

  67. 64196

    Returns: 50

  68. 66102

    Returns: 36

  69. 28320

    Returns: 38

  70. 86459

    Returns: 9

  71. 60369

    Returns: 37

  72. 62831

    Returns: 5

  73. 5626

    Returns: 39

  74. 50231

    Returns: 26

  75. 67356

    Returns: 20

  76. 66476

    Returns: 10

  77. 67304

    Returns: 28

  78. 5548

    Returns: 7

  79. 2450

    Returns: 8

  80. 509

    Returns: 4

  81. 25

    Returns: 3

  82. 91

    Returns: 3

  83. 13

    Returns: 2

  84. 12

    Returns: 1

  85. 31

    Returns: 2

  86. 71

    Returns: 5

  87. 89

    Returns: 1

  88. 342

    Returns: 1

  89. 333

    Returns: 0

  90. 344

    Returns: 1

  91. 428

    Returns: 4

  92. 429

    Returns: 5

  93. 430

    Returns: 4

  94. 14590

    Returns: 49

  95. 14591

    Returns: 50

  96. 14592

    Returns: 49

  97. 68235

    Returns: 49

  98. 68236

    Returns: 50

  99. 68237

    Returns: 49

  100. 91219

    Returns: 0

  101. 98989

    Returns: 0

  102. 31413

    Returns: 0

  103. 10001

    Returns: 0

  104. 10002

    Returns: 1

  105. 22

    Returns: 0

  106. 17

    Returns: 5

  107. 16

    Returns: 5

  108. 59

    Returns: 4

  109. 50371

    Returns: 34

  110. 110

    Returns: 1

  111. 199

    Returns: 3

  112. 109

    Returns: 2

  113. 1199

    Returns: 22

  114. 1234

    Returns: 13

  115. 90

    Returns: 2

  116. 10

    Returns: 1

  117. 121

    Returns: 0

  118. 1010

    Returns: 9

  119. 1099

    Returns: 12

  120. 19

    Returns: 3

  121. 39

    Returns: 5

  122. 29999

    Returns: 4

  123. 129

    Returns: 2

  124. 1919

    Returns: 38

  125. 991

    Returns: 2

  126. 12345

    Returns: 24

  127. 13232

    Returns: 1

  128. 1934

    Returns: 53

  129. 9900

    Returns: 11

  130. 1219

    Returns: 2

  131. 5125

    Returns: 10

  132. 139

    Returns: 2

  133. 29

    Returns: 4

  134. 1810

    Returns: 39

  135. 901

    Returns: 3

  136. 1098

    Returns: 13

  137. 389

    Returns: 4

  138. 798

    Returns: 1

  139. 30002

    Returns: 1

  140. 70

    Returns: 4

  141. 3189

    Returns: 34

  142. 134

    Returns: 3

  143. 100

    Returns: 1


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: