Problem Statement
Arthur has a number X and he would like to palindromize it. Palindromization of a number means adding or subtracting some value to obtain a palindromic number. For example, one possible way to palindromize number 25 is adding 8 resulting in number 33, which is palindromic.
Unfortunately Arthur cannot palindromize numbers for free. The cost of palindromization in dollars is equal to the value added or subtracted. In the previous example Arthur would have to pay 8 dollars.
Of course Arthur would like to palindromize X spending the least amount of money. Given X return the minimum amount of money Arthur needs.
Definition
- Class:
- PalindromizationDiv2
- Method:
- getMinimumCost
- Parameters:
- int
- Returns:
- int
- Method signature:
- int getMinimumCost(int X)
- (be sure your method is public)
Constraints
- X will be between 0 and 100000 (10^5), inclusive.
Examples
25
Returns: 3
In the problem statement it is shown that adding 8 to 25 results in a palindromic number 33. However, this is not the cheapest way to palindromize 25. Arthur can subtract 3 to obtain a number 22 which is also palindromic.
12321
Returns: 0
Already a palindromic number.
40
Returns: 4
2011
Returns: 9
0
Returns: 0
100000
Returns: 1
1
Returns: 0
2
Returns: 0
3
Returns: 0
4
Returns: 0
5
Returns: 0
6
Returns: 0
7
Returns: 0
8
Returns: 0
9
Returns: 0
11
Returns: 0
12
Returns: 1
99999
Returns: 0
99998
Returns: 1
99900
Returns: 1
1054
Returns: 53
1053
Returns: 52
1056
Returns: 55
1057
Returns: 54
1058
Returns: 53
4499
Returns: 55
5500
Returns: 55
6611
Returns: 55
9944
Returns: 55
1606
Returns: 55
2607
Returns: 55
3938
Returns: 55
4059
Returns: 55
5940
Returns: 55
6391
Returns: 55
7833
Returns: 54
8612
Returns: 54
9065
Returns: 54
9998
Returns: 1
9999
Returns: 0
10000
Returns: 1
10954
Returns: 53
11965
Returns: 54
23988
Returns: 54
33985
Returns: 52
34998
Returns: 55
44999
Returns: 55
46010
Returns: 54
55000
Returns: 55
65001
Returns: 55
73990
Returns: 53
83993
Returns: 55
85001
Returns: 53
86013
Returns: 55
90964
Returns: 55
98034
Returns: 55
99043
Returns: 54
99044
Returns: 55
99045
Returns: 54
22325
Returns: 3
24691
Returns: 49
29213
Returns: 21
89912
Returns: 14
52431
Returns: 6
22171
Returns: 49
51289
Returns: 26
64196
Returns: 50
66102
Returns: 36
28320
Returns: 38
86459
Returns: 9
60369
Returns: 37
62831
Returns: 5
5626
Returns: 39
50231
Returns: 26
67356
Returns: 20
66476
Returns: 10
67304
Returns: 28
5548
Returns: 7
2450
Returns: 8
509
Returns: 4
25
Returns: 3
91
Returns: 3
13
Returns: 2
12
Returns: 1
31
Returns: 2
71
Returns: 5
89
Returns: 1
342
Returns: 1
333
Returns: 0
344
Returns: 1
428
Returns: 4
429
Returns: 5
430
Returns: 4
14590
Returns: 49
14591
Returns: 50
14592
Returns: 49
68235
Returns: 49
68236
Returns: 50
68237
Returns: 49
91219
Returns: 0
98989
Returns: 0
31413
Returns: 0
10001
Returns: 0
10002
Returns: 1
22
Returns: 0
17
Returns: 5
16
Returns: 5
59
Returns: 4
50371
Returns: 34
110
Returns: 1
199
Returns: 3
109
Returns: 2
1199
Returns: 22
1234
Returns: 13
90
Returns: 2
10
Returns: 1
121
Returns: 0
1010
Returns: 9
1099
Returns: 12
19
Returns: 3
39
Returns: 5
29999
Returns: 4
129
Returns: 2
1919
Returns: 38
991
Returns: 2
12345
Returns: 24
13232
Returns: 1
1934
Returns: 53
9900
Returns: 11
1219
Returns: 2
5125
Returns: 10
139
Returns: 2
29
Returns: 4
1810
Returns: 39
901
Returns: 3
1098
Returns: 13
389
Returns: 4
798
Returns: 1
30002
Returns: 1
70
Returns: 4
3189
Returns: 34
134
Returns: 3
100
Returns: 1