Problem Statement
John and Brus believe that the digits 4 and 7 are lucky and all others are not. According to them, an almost lucky number is a number that contains at most one non-lucky digit in its decimal representation. Return the total number of almost lucky numbers between a and b, inclusive.
Definition
- Class:
- TheAlmostLuckyNumbersDivOne
- Method:
- find
- Parameters:
- long, long
- Returns:
- long
- Method signature:
- long find(long a, long b)
- (be sure your method is public)
Constraints
- a will be between 1 and 10^16, inclusive.
- b will be between a and 10^16, inclusive.
Examples
4
7
Returns: 4
All numbers between 4 and 7 are almost lucky.
8
19
Returns: 4
Numbers 8, 9, 14 and 17 are almost lucky.
28
33
Returns: 0
No almost lucky numbers here.
12345678900
98765432100
Returns: 91136
64
86
Returns: 13
62
76
Returns: 9
97
100
Returns: 1
1
34
Returns: 14
2
37
Returns: 14
7
57
Returns: 21
3
45
Returns: 19
8
46
Returns: 15
8
51
Returns: 18
9
16
Returns: 2
6
19
Returns: 6
723696
846400
Returns: 648
38986
512000
Returns: 1376
393417
934199
Returns: 1440
104052
209742
Returns: 32
727064
819465
Returns: 632
765462
973116
Returns: 360
497597
834500
Returns: 740
222065
426983
Returns: 104
529199
810446
Returns: 736
339257
803318
Returns: 1440
852396
915259
Returns: 16
721276
991052
Returns: 704
596914
799098
Returns: 704
119631
963105
Returns: 1552
98837
162888
Returns: 16
914403
940653
Returns: 0
926889
992513
Returns: 32
924988
929723
Returns: 0
951164
962240
Returns: 0
986059
998616
Returns: 0
999430
999498
Returns: 0
918812
960842
Returns: 16
957387
985213
Returns: 16
961842
994691
Returns: 16
918212
978671
Returns: 32
1
1000000
Returns: 2631
444444
777777
Returns: 1222
696
28765
Returns: 340
986
647568
Returns: 1732
417
893802
Returns: 2541
52
44295
Returns: 474
474747
747474
Returns: 520
7099619347723696
8096791250547355
Returns: 1982464
8116120065038986
8302882381790350
Returns: 0
5693912333393417
7751099423239359
Returns: 1548288
5678191683104052
7760208074754348
Returns: 1556480
6954493434727064
9163564499235981
Returns: 2031616
6046915454765462
9957734391816112
Returns: 2097152
8618093852497597
8854467931818360
Returns: 16384
4482389558222065
7195076591034935
Returns: 1114112
4034525729529199
6504345205992516
Returns: 2048000
1310604297339257
9054236214554102
Returns: 4194304
7608741606852396
8659909043592269
Returns: 999424
3988356993721276
8950024662032777
Returns: 4096000
5572708823596914
8667403182616822
Returns: 2064384
347723696
7884923925641609
Returns: 7832736
65038986
9657168644199331
Returns: 7902912
333393417
7573419255247019
Returns: 6857984
683104052
4768214517788433
Returns: 5292288
434727064
5036960610367256
Returns: 5784160
1
9883257925643274
Returns: 7929863
2
9656914644199584
Returns: 7913478
7
9572215255248222
Returns: 7913473
3
9768164517788482
Returns: 7921669
8
9033728610370487
Returns: 7897088
1
10000000000000000
Returns: 7929863
444444444444444
7777777777777777
Returns: 5963782
4774747447442477
7747447740747444
Returns: 1733270
4774747447448477
7747447747747444
Returns: 1736082
1
987654321098765
Returns: 3702791
14031984
9876543212902184
Returns: 7923584
1
1444444444444444
Returns: 3702792
1
5
Returns: 5
1
700044074791536
Returns: 2736135
10000000000000000
10000000000000000
Returns: 0
999
1000000000457
Returns: 364408
3092382930
8243948905
Returns: 39424
1
9999999999999999
Returns: 7929863
1
100000000
Returns: 14599
1
33
Returns: 13
274249780
3111800046048
Returns: 357760
444444444444444
474747747444747
Returns: 577520
1
1000
Returns: 143
1
1
Returns: 1
1
6757473
Returns: 4535