Statistics

Problem Statement for "TheAlmostLuckyNumbersDivTwo"

Problem Statement

John and Brus believe that the digits 4 and 7 are lucky and all others are not. According to them, an almost lucky number is a number that contains at most one non-lucky digit in its decimal representation. Return the total number of almost lucky numbers between a and b, inclusive.

Definition

Class:
TheAlmostLuckyNumbersDivTwo
Method:
find
Parameters:
int, int
Returns:
int
Method signature:
int find(int a, int b)
(be sure your method is public)

Constraints

  • a will be between 1 and 1,000,000, inclusive.
  • b will be between a and 1,000,000, inclusive.

Examples

  1. 4

    7

    Returns: 4

    All numbers between 4 and 7 are almost lucky.

  2. 8

    19

    Returns: 4

    Numbers 8, 9, 14 and 17 are almost lucky.

  3. 28

    33

    Returns: 0

    No almost lucky numbers here.

  4. 1234

    4321

    Returns: 36

  5. 64

    86

    Returns: 13

  6. 62

    76

    Returns: 9

  7. 97

    100

    Returns: 1

  8. 1

    34

    Returns: 14

  9. 2

    37

    Returns: 14

  10. 7

    57

    Returns: 21

  11. 3

    45

    Returns: 19

  12. 8

    46

    Returns: 15

  13. 8

    51

    Returns: 18

  14. 9

    16

    Returns: 2

  15. 6

    19

    Returns: 6

  16. 723696

    846400

    Returns: 648

  17. 38986

    512000

    Returns: 1376

  18. 393417

    934199

    Returns: 1440

  19. 104052

    209742

    Returns: 32

  20. 727064

    819465

    Returns: 632

  21. 765462

    973116

    Returns: 360

  22. 497597

    834500

    Returns: 740

  23. 222065

    426983

    Returns: 104

  24. 529199

    810446

    Returns: 736

  25. 339257

    803318

    Returns: 1440

  26. 852396

    915259

    Returns: 16

  27. 721276

    991052

    Returns: 704

  28. 596914

    799098

    Returns: 704

  29. 119631

    963105

    Returns: 1552

  30. 98837

    162888

    Returns: 16

  31. 914403

    940653

    Returns: 0

  32. 926889

    992513

    Returns: 32

  33. 924988

    929723

    Returns: 0

  34. 951164

    962240

    Returns: 0

  35. 986059

    998616

    Returns: 0

  36. 999430

    999498

    Returns: 0

  37. 918812

    960842

    Returns: 16

  38. 957387

    985213

    Returns: 16

  39. 961842

    994691

    Returns: 16

  40. 918212

    978671

    Returns: 32

  41. 1

    1000000

    Returns: 2631

  42. 444444

    777777

    Returns: 1222

  43. 696

    28765

    Returns: 340

  44. 986

    647568

    Returns: 1732

  45. 417

    893802

    Returns: 2541

  46. 52

    44295

    Returns: 474

  47. 474747

    747474

    Returns: 520

  48. 4

    4

    Returns: 1

  49. 1

    9

    Returns: 9

  50. 44

    44

    Returns: 1

  51. 440

    460

    Returns: 12

  52. 40

    49

    Returns: 10

  53. 5

    6

    Returns: 2

  54. 1

    100000

    Returns: 1063

  55. 11

    20

    Returns: 2

  56. 47

    47

    Returns: 1

  57. 1

    1000

    Returns: 143

  58. 43

    57

    Returns: 9

  59. 77

    77

    Returns: 1

  60. 4747

    4747

    Returns: 1

  61. 777

    777

    Returns: 1

  62. 42

    42

    Returns: 1

  63. 44

    45

    Returns: 2

  64. 46

    47

    Returns: 2

  65. 441

    441

    Returns: 1

  66. 775

    775

    Returns: 1


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: