Problem Statement
Fox Jiro and Eel Saburo are good friends. One day Jiro received a letter from Saburo. The letter contains four integers representing an encrypted message. Please help Jiro to decrypt the message.
You are given four
- AminusB = A - B
- BminusC = B - C
- AplusB = A + B
- BplusC = B + C
There is always at most one triplet of integers A, B, C that satisfies all four equalities.
If it exists, return a
Definition
- Class:
- FoxAndIntegers
- Method:
- get
- Parameters:
- int, int, int, int
- Returns:
- int[]
- Method signature:
- int[] get(int AminusB, int BminusC, int AplusB, int BplusC)
- (be sure your method is public)
Constraints
- AminusB will be between -30 and 30, inclusive.
- BminusC will be between -30 and 30, inclusive.
- AplusB will be between -30 and 30, inclusive.
- BplusC will be between -30 and 30. inclusive.
Examples
1
-2
3
4
Returns: {2, 1, 3 }
A - B = 2 - 1 = 1 B - C = 1 - 3 = -2 A + B = 2 + 1 = 3 B + C = 1 + 3 = 4
0
0
5
5
Returns: { }
A = B = C = 2.5 satisfy all four equalities, but A, B, and C must all be integers.
10
-23
-10
3
Returns: {0, -10, 13 }
A, B, and C may be negative or zero.
-27
14
13
22
Returns: { }
30
30
30
-30
Returns: {30, 0, -30 }
0
0
0
0
Returns: {0, 0, 0 }
-1
1
1
1
Returns: {0, 1, 0 }
-1
-1
-1
1
Returns: {-1, 0, 1 }
0
-30
0
30
Returns: {0, 0, 30 }
-1
2
1
0
Returns: {0, 1, -1 }
0
0
-2
-2
Returns: {-1, -1, -1 }
0
0
2
2
Returns: {1, 1, 1 }
2
-2
0
0
Returns: {1, -1, 1 }
-2
2
0
0
Returns: {-1, 1, -1 }
0
1
2
1
Returns: {1, 1, 0 }
-24
13
-12
-1
Returns: {-18, 6, -7 }
-21
15
-23
-17
Returns: {-22, -1, -16 }
14
6
10
-10
Returns: {12, -2, -8 }
-1
-10
-11
0
Returns: {-6, -5, 5 }
-9
-6
-11
4
Returns: {-10, -1, 5 }
-21
19
21
23
Returns: {0, 21, 2 }
-6
-8
-12
2
Returns: {-9, -3, 5 }
4
-24
-24
-4
Returns: {-10, -14, 10 }
0
11
-18
-29
Returns: {-9, -9, -20 }
28
24
24
-28
Returns: {26, -2, -26 }
-24
-5
-4
25
Returns: {-14, 10, 15 }
-30
14
-16
0
Returns: {-23, 7, -7 }
5
9
5
-9
Returns: {5, 0, -9 }
19
9
7
-21
Returns: {13, -6, -15 }
-5
-30
-19
16
Returns: {-12, -7, 23 }
13
10
13
-10
Returns: {13, 0, -10 }
25
15
23
-17
Returns: {24, -1, -16 }
-26
26
4
4
Returns: {-11, 15, -11 }
-7
-2
15
24
Returns: {4, 11, 13 }
-27
-16
-17
26
Returns: {-22, 5, 21 }
-7
12
-21
-26
Returns: {-14, -7, -19 }
-24
29
28
23
Returns: {2, 26, -3 }
30
-30
-16
-16
Returns: {7, -23, 7 }
-27
23
-23
-19
Returns: {-25, 2, -21 }
-14
3
18
29
Returns: {2, 16, 13 }
-21
-18
-15
24
Returns: {-18, 3, 21 }
11
0
-9
-20
Returns: {1, -10, -10 }
26
-19
30
23
Returns: {28, 2, 21 }
-18
27
8
-1
Returns: {-5, 13, -14 }
-6
24
22
4
Returns: {8, 14, -10 }
-25
-30
-3
-16
Returns: { }
19
9
-15
6
Returns: { }
-10
10
30
-11
Returns: { }
10
18
5
-18
Returns: { }
0
-7
22
-7
Returns: { }
-27
3
2
-12
Returns: { }
-14
27
11
-24
Returns: { }
-24
12
9
6
Returns: { }
20
-3
7
-22
Returns: { }
3
5
18
-25
Returns: { }
-18
5
1
14
Returns: { }
29
12
26
-11
Returns: { }
-24
27
21
-22
Returns: { }
12
1
1
27
Returns: { }
-8
-30
-12
-27
Returns: { }
-17
6
-5
13
Returns: { }
11
-30
-17
-8
Returns: { }
-12
21
-23
-9
Returns: { }
9
18
-4
11
Returns: { }
29
14
14
-4
Returns: { }
1
1
1
1
Returns: { }
0
1
0
0
Returns: { }
1
-4
3
4
Returns: { }
0
0
1
2
Returns: { }
10
23
14
11
Returns: { }
10
15
6
8
Returns: { }
1
9
3
10
Returns: { }
0
-3
4
7
Returns: {2, 2, 5 }
-1
-1
3
7
Returns: { }
4
0
6
3
Returns: { }
1
0
5
5
Returns: { }
1
4
3
7
Returns: { }
15
14
20
-8
Returns: { }
2
3
4
5
Returns: { }
2
2
10
8
Returns: { }
5
2
5
2
Returns: { }
1
2
3
4
Returns: { }
30
0
30
0
Returns: {30, 0, 0 }
-2
-2
6
14
Returns: { }
-2
2
6
8
Returns: { }
2
2
8
4
Returns: {5, 3, 1 }
2
1
5
1
Returns: { }
-1
0
-1
0
Returns: {-1, 0, 0 }
4
3
10
1
Returns: { }
8
-1
15
7
Returns: { }
30
-30
30
-30
Returns: { }
5
15
9
3
Returns: { }
0
1
0
1
Returns: { }
3
1
6
2
Returns: { }
5
1
8
3
Returns: { }
5
-2
6
2
Returns: { }
5
0
2
-2
Returns: { }
8
-6
12
9
Returns: { }
4
-4
7
8
Returns: { }
0
0
5
4
Returns: { }
9
6
26
10
Returns: { }
1
-2
4
4
Returns: { }
-3
-1
1
5
Returns: {-1, 2, 3 }
-1
2
-7
-8
Returns: {-4, -3, -5 }
0
-1
3
5
Returns: { }
5
-5
6
7
Returns: { }
0
0
10
0
Returns: { }
4
2
6
4
Returns: { }
3
3
5
1
Returns: { }