Statistics

Problem Statement for "FruitTrees"

Problem Statement

There is an infinitely long straight road. Fox Ciel is going to plant trees of three kinds: apple trees, kiwi trees, and grape trees. There will be infinitely many trees of each kind. Trees of each kind will be placed along the entire road in regular intervals.

More precisely, you are given ints apple, kiwi, and grape with the following meaning: The distance between any two consecutive apple trees must be apple, the distance between any two consecutive kiwi trees must be kiwi, and the distance between any two consecutive grape trees must be grape.

Ciel can only plant the trees at integer coordinates, but she gets to choose those coordinates as long as the above conditions are satisfied. In other words, Ciel gets to choose three integers x, y, and z such that:
  • She plants apple trees at coordinates ..., x - 2 * apple, x - apple, x, x + apple, x + 2 * apple, ...
  • She plants kiwi trees at coordinates ..., y - 2 * kiwi, y - kiwi, y, y + kiwi, y + 2 * kiwi, ...
  • She plants grape trees at coordinates ..., z - 2 * grape, z - grape, z, z + grape, z + 2 * grape, ...
Ciel wants to maximize the distance between two closest trees (of any kind). Return this distance.

Definition

Class:
FruitTrees
Method:
maxDist
Parameters:
int, int, int
Returns:
int
Method signature:
int maxDist(int apple, int kiwi, int grape)
(be sure your method is public)

Constraints

  • apple will be between 1 and 2,000, inclusive.
  • kiwi will be between 1 and 2,000, inclusive.
  • grape will be between 1 and 2,000, inclusive.

Examples

  1. 1

    5

    8

    Returns: 0

    Apple trees will be planted at all integer coordinates, so at least two trees will be planted where a kiwi tree is planted.

  2. 3

    3

    6

    Returns: 1

    One of the optimal solutions is as follows: Plant apple trees at ..., -5, -2, 1, 4, ... Plant kiwi trees at ..., -4, -1, 2, 5, ... Plant grape trees at ..., -9, -3, 3, 9, ...

  3. 40

    30

    20

    Returns: 5

  4. 899

    1073

    1147

    Returns: 14

  5. 2000

    2000

    2000

    Returns: 666

  6. 1977

    1977

    1977

    Returns: 659

  7. 1255

    1255

    1255

    Returns: 418

  8. 1416

    708

    1416

    Returns: 354

  9. 747

    1494

    1494

    Returns: 373

  10. 776

    388

    1164

    Returns: 129

  11. 1275

    1700

    425

    Returns: 141

  12. 825

    1100

    1925

    Returns: 91

  13. 654

    1308

    1308

    Returns: 327

  14. 324

    1620

    1296

    Returns: 108

  15. 1890

    315

    1575

    Returns: 105

  16. 310

    1560

    1670

    Returns: 3

  17. 936

    420

    372

    Returns: 4

  18. 760

    970

    390

    Returns: 3

  19. 1300

    160

    350

    Returns: 5

  20. 1395

    360

    495

    Returns: 15

  21. 425

    1139

    1071

    Returns: 5

  22. 979

    363

    1551

    Returns: 5

  23. 1281

    1155

    1449

    Returns: 7

  24. 330

    435

    90

    Returns: 7

  25. 1740

    40

    780

    Returns: 10

  26. 641

    942

    1251

    Returns: 0

  27. 1781

    1045

    1153

    Returns: 0

  28. 456

    210

    990

    Returns: 3

  29. 1497

    1716

    1874

    Returns: 0

  30. 573

    1983

    412

    Returns: 0

  31. 1730

    1005

    839

    Returns: 0

  32. 366

    1257

    1672

    Returns: 0

  33. 1845

    976

    1593

    Returns: 0

  34. 839

    1800

    995

    Returns: 0

  35. 1614

    920

    1780

    Returns: 1

  36. 444

    1480

    1110

    Returns: 74

  37. 1221

    1332

    1628

    Returns: 55

  38. 1425

    1900

    456

    Returns: 28

  39. 720

    330

    1188

    Returns: 15

  40. 1050

    550

    1540

    Returns: 25

  41. 288

    1824

    1368

    Returns: 36

  42. 645

    900

    860

    Returns: 7

  43. 1323

    504

    196

    Returns: 14

  44. 1596

    437

    1932

    Returns: 9

  45. 980

    1440

    735

    Returns: 7

  46. 1

    1

    2000

    Returns: 0

  47. 1

    2000

    2000

    Returns: 0

  48. 6

    10

    15

    Returns: 1

  49. 10

    20

    30

    Returns: 3

  50. 4

    12

    20

    Returns: 1

  51. 19

    21

    12

    Returns: 0

  52. 2000

    150

    50

    Returns: 16

  53. 2

    4

    8

    Returns: 1

  54. 18

    20

    4

    Returns: 1

  55. 2

    4

    6

    Returns: 0

  56. 2

    4

    4

    Returns: 1

  57. 2000

    2000

    1000

    Returns: 500

  58. 2000

    1999

    1997

    Returns: 0

  59. 1997

    2000

    2000

    Returns: 0

  60. 2000

    1000

    500

    Returns: 250

  61. 1104

    736

    1840

    Returns: 122

  62. 30

    40

    50

    Returns: 3

  63. 2

    2

    4

    Returns: 0

  64. 6

    6

    12

    Returns: 2

  65. 10

    2000

    2000

    Returns: 5

  66. 1000

    1000

    2000

    Returns: 333

  67. 82

    28

    62

    Returns: 0

  68. 10

    20

    20

    Returns: 5

  69. 4

    4

    3

    Returns: 0

  70. 1993

    1997

    1999

    Returns: 0

  71. 10

    4

    2

    Returns: 0

  72. 4

    4

    2

    Returns: 1

  73. 200

    200

    201

    Returns: 0

  74. 5

    100

    200

    Returns: 2

  75. 20

    40

    80

    Returns: 10

  76. 100

    100

    200

    Returns: 33

  77. 4

    8

    12

    Returns: 1

  78. 10

    10

    5

    Returns: 2

  79. 100

    200

    300

    Returns: 33

  80. 2

    96

    98

    Returns: 0

  81. 200

    300

    500

    Returns: 33

  82. 1995

    1998

    1992

    Returns: 1

  83. 12

    8

    4

    Returns: 1

  84. 4

    8

    8

    Returns: 2

  85. 5

    10

    15

    Returns: 1

  86. 2

    6

    6

    Returns: 1

  87. 1974

    1758

    1385

    Returns: 0

  88. 2

    4

    2000

    Returns: 1

  89. 20

    30

    50

    Returns: 3

  90. 1997

    1999

    2000

    Returns: 0

  91. 70

    80

    90

    Returns: 3

  92. 2000

    2

    2

    Returns: 0

  93. 1976

    1988

    1968

    Returns: 2

  94. 783

    1241

    1736

    Returns: 0

  95. 6

    8

    10

    Returns: 0

  96. 2

    8

    2

    Returns: 0

  97. 25

    100

    400

    Returns: 12

  98. 1682

    1989

    1955

    Returns: 0

  99. 12

    16

    20

    Returns: 1

  100. 14

    28

    56

    Returns: 7

  101. 30

    60

    90

    Returns: 10

  102. 47

    47

    188

    Returns: 15

  103. 5

    10

    5

    Returns: 1

  104. 10

    100

    100

    Returns: 5

  105. 2

    2000

    2000

    Returns: 1

  106. 77

    88

    99

    Returns: 3

  107. 10

    100

    1000

    Returns: 5

  108. 17

    34

    51

    Returns: 5

  109. 97

    970

    388

    Returns: 48

  110. 4

    8

    48

    Returns: 2

  111. 12

    1200

    1800

    Returns: 6

  112. 20

    40

    60

    Returns: 6

  113. 1996

    1998

    2000

    Returns: 1

  114. 1997

    1998

    1999

    Returns: 0

  115. 1650

    1500

    352

    Returns: 2

  116. 30

    30

    30

    Returns: 10

  117. 50

    150

    2000

    Returns: 16

  118. 8

    4

    2

    Returns: 1

  119. 7

    7

    7

    Returns: 2

  120. 6

    4

    4

    Returns: 1

  121. 544

    702

    1940

    Returns: 1

  122. 28

    44

    77

    Returns: 2

  123. 221

    247

    323

    Returns: 6

  124. 8

    16

    32

    Returns: 4

  125. 99

    77

    63

    Returns: 3

  126. 1997

    1314

    1879

    Returns: 0

  127. 14

    7

    21

    Returns: 2

  128. 10

    50

    50

    Returns: 5


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: