Problem Statement
Definition
- Class:
- SparseFactorialDiv2
- Method:
- getCount
- Parameters:
- long, long, long
- Returns:
- long
- Method signature:
- long getCount(long lo, long hi, long divisor)
- (be sure your method is public)
Constraints
- lo will be between 1 and 1,000,000,000,000, inclusive.
- hi will be between lo and 1,000,000,000,000, inclusive.
- divisor will be between 2 and 997, inclusive.
- divisor will be a prime number.
Examples
4
8
3
Returns: 3
The value of F(n) for each n = 4, 5, ..., 8 is as follows. F(4) = 4*3 = 12 F(5) = 5*4*1 = 20 F(6) = 6*5*2 = 60 F(7) = 7*6*3 = 126 F(8) = 8*7*4 = 224 Thus, F(4), F(6), F(7) are divisible by 3 but F(5) and F(8) are not.
9
11
7
Returns: 1
F(9) = 9*8*5 = 360 F(10) = 10*9*6*1 = 540 F(11) = 11*10*7*2 = 1540 Only F(11) is divisible by 7.
1
1000000000000
2
Returns: 999999999999
Watch out for the overflow.
16
26
11
Returns: 4
10000
20000
997
Returns: 1211
123456789
987654321
71
Returns: 438184668
1
1000000000000
2
Returns: 999999999999
3
4
2
Returns: 2
1
2
2
Returns: 1
2
2
2
Returns: 1
5
5
2
Returns: 1
370838091663
834675418055
2
Returns: 463837326393
1
1000000000000
3
Returns: 666666666666
3
9
3
Returns: 5
1
3
3
Returns: 1
3
5
3
Returns: 2
9
9
3
Returns: 1
9055532301
996884473171
3
Returns: 658552627248
1
1000000000000
5
Returns: 599999999998
13
17
5
Returns: 3
1
5
5
Returns: 1
4
10
5
Returns: 4
26
27
5
Returns: 1
379639826536
866779149316
5
Returns: 292283593669
1
1000000000000
7
Returns: 571428571425
24
30
7
Returns: 4
1
2
7
Returns: 0
5
13
7
Returns: 3
49
54
7
Returns: 4
207410943772
620271392370
7
Returns: 235920256342
1
1000000000000
107
Returns: 504672896695
2903
4519
107
Returns: 815
17
40
107
Returns: 0
148
195
107
Returns: 3
11461
11512
107
Returns: 29
147603225663
380596911938
107
Returns: 117585598684
1
1000000000000
337
Returns: 501483674710
29103
86775
337
Returns: 28919
188
247
337
Returns: 0
394
563
337
Returns: 8
113758
113793
337
Returns: 15
912777978662
929259735768
337
Returns: 8265332200
1
1000000000000
487
Returns: 501026684047
69498
164388
487
Returns: 47539
147
463
487
Returns: 0
438
501
487
Returns: 4
237238
237650
487
Returns: 206
320625606143
400928202194
487
Returns: 40233744226
1
1000000000000
911
Returns: 500548812613
525413
828127
911
Returns: 151514
236
596
911
Returns: 0
755
1058
911
Returns: 13
830157
830425
911
Returns: 138
175957449324
696933000636
911
Returns: 260773711743
1
1000000000000
937
Returns: 500533581123
75190
132182
937
Returns: 19509
468
736
937
Returns: 0
829
1307
937
Returns: 20
878427
878791
937
Returns: 175
49404831106
726655676267
937
Returns: 338986815769
1
1000000000000
967
Returns: 500517023885
182310
563120
967
Returns: 189109
284
727
967
Returns: 0
1246
1775
967
Returns: 12
935481
935520
967
Returns: 17
298893793182
784617505894
967
Returns: 243113006143
1
1000000000000
997
Returns: 500501462850
277346
522107
997
Returns: 122495
233
250
997
Returns: 0
603
702
997
Returns: 0
994083
994228
997
Returns: 72
183635036997
394410526165
997
Returns: 105493449447
1
999999999999
17
Returns: 529411764688
123456789000
987654321000
71
Returns: 438184664115
179426549
1000000000000
997
Returns: 500411701255
10000000000
1000000000000
2
Returns: 990000000001
1
1000000000000
13
Returns: 538461538452