Problem Statement
Definition
- Class:
- PackingBallsDiv2
- Method:
- minPacks
- Parameters:
- int, int, int
- Returns:
- int
- Method signature:
- int minPacks(int R, int G, int B)
- (be sure your method is public)
Constraints
- R, G, and B will each be between 1 and 100, inclusive.
Examples
4
2
4
Returns: 4
We have 4 red, 2 green, and 4 blue balls. Clearly, we need at least four packages to store 10 balls. One possibility of using exactly four packages looks as follows: RGB, RG, RR, BBB. (I.e., the first package has 1 ball of each color, the second package has a red and a green ball, and so on.)
1
7
1
Returns: 3
Here the only possible solution is to have one package with RGB and two packages with GGG each.
2
3
5
Returns: 4
78
53
64
Returns: 66
100
100
100
Returns: 100
1
1
1
Returns: 1
1
1
2
Returns: 2
1
1
3
Returns: 2
1
1
4
Returns: 2
1
1
5
Returns: 3
1
2
2
Returns: 2
1
2
3
Returns: 3
1
2
4
Returns: 3
1
2
5
Returns: 3
1
3
3
Returns: 3
1
3
4
Returns: 3
1
3
5
Returns: 4
1
4
4
Returns: 3
1
4
5
Returns: 4
1
5
5
Returns: 4
2
2
2
Returns: 2
2
2
3
Returns: 3
2
2
4
Returns: 3
2
2
5
Returns: 3
2
3
3
Returns: 3
2
3
4
Returns: 4
2
4
4
Returns: 4
2
4
5
Returns: 4
2
5
5
Returns: 4
3
3
3
Returns: 3
3
3
4
Returns: 4
3
3
5
Returns: 4
3
4
4
Returns: 4
3
4
5
Returns: 5
3
5
5
Returns: 5
4
4
4
Returns: 4
4
4
5
Returns: 5
4
5
5
Returns: 5
5
5
5
Returns: 5
5
8
6
Returns: 7
2
1
6
Returns: 4
9
10
8
Returns: 10
10
7
5
Returns: 8
2
5
4
Returns: 4
8
1
5
Returns: 5
8
2
1
Returns: 4
6
3
6
Returns: 5
10
3
9
Returns: 8
7
7
4
Returns: 6
28
88
56
Returns: 58
66
17
93
Returns: 59
5
4
82
Returns: 31
87
69
19
Returns: 59
30
91
98
Returns: 74
2
57
13
Returns: 25
46
30
52
Returns: 43
45
11
29
Returns: 29
94
43
65
Returns: 68
93
90
15
Returns: 66
64
70
20
Returns: 52
3
53
57
Returns: 38
69
95
40
Returns: 69
90
99
13
Returns: 68
41
42
51
Returns: 45
85
58
3
Returns: 49
15
41
46
Returns: 35
22
34
61
Returns: 39
14
93
17
Returns: 42
16
71
3
Returns: 31
79
72
97
Returns: 83
96
71
79
Returns: 83
100
76
84
Returns: 87
91
96
91
Returns: 93
72
99
100
Returns: 91
10
10
9
Returns: 10
3
3
2
Returns: 3
6
6
2
Returns: 5
75
50
61
Returns: 63
4
3
4
Returns: 4
65
65
65
Returns: 65
9
9
2
Returns: 7
2
3
30
Returns: 12
5
3
3
Returns: 4
62
62
62
Returns: 62
10
10
10
Returns: 10
3
2
3
Returns: 3
3
5
3
Returns: 4
7
7
6
Returns: 7
5
5
4
Returns: 5
2
1
1
Returns: 2
99
100
100
Returns: 100
9
10
10
Returns: 10
4
4
3
Returns: 4
12
13
13
Returns: 13
5
1
2
Returns: 3
5
6
6
Returns: 6
2
2
1
Returns: 2
1
3
1
Returns: 2
1
1
99
Returns: 34
78
53
63
Returns: 65
3
5
6
Returns: 5
60
61
61
Returns: 61
8
8
10
Returns: 9
11
11
1
Returns: 8
22
45
61
Returns: 43
8
8
1
Returns: 6
2
1
2
Returns: 2
6
4
4
Returns: 5
5
2
1
Returns: 3
92
90
90
Returns: 91
6
7
8
Returns: 8
100
89
20
Returns: 70
11
3
3
Returns: 6
9
9
11
Returns: 10
4
3
3
Returns: 4
3
4
3
Returns: 4
2
1
3
Returns: 3
17
19
20
Returns: 19
44
44
44
Returns: 44
20
20
1
Returns: 14
6
2
6
Returns: 5
12
11
99
Returns: 41
4
3
1
Returns: 3
3
6
5
Returns: 5
23
98
78
Returns: 67
8
6
6
Returns: 7
100
100
99
Returns: 100
99
3
3
Returns: 35
5
7
8
Returns: 7
12
12
14
Returns: 13
20
30
40
Returns: 31
99
96
1
Returns: 66
4
3
7
Returns: 5