Problem Statement
We have an infinite strip of paper divided into a sequence of cells. All of the cells are initially white. We place a robot onto one of the cells. Each time the robot stands on a cell, it paints the cell red.
You are given an
Compute and return the expected number of red cells at the end.
Definition
- Class:
- RedPaint
- Method:
- expectedCells
- Parameters:
- int
- Returns:
- double
- Method signature:
- double expectedCells(int N)
- (be sure your method is public)
Notes
- Your return value must have an absolute or a relative error at most 10^(-9).
Constraints
- N will be between 0 and 500, inclusive.
Examples
0
Returns: 1.0
No movement. At the end there is a single red cell: the one with the robot.
1
Returns: 2.0
One step. The robot will choose a random direction and move. There will be exactly two red cells: the one where it started and the one where it ended.
2
Returns: 2.5
In the third step the robot will color a third cell red with probability 1/2. Hence, the expected number of red cells is 0.5*2 + 0.5*3 = 2.5.
4
Returns: 3.375
3
Returns: 3.0
5
Returns: 3.75
6
Returns: 4.0625
7
Returns: 4.375
500
Returns: 35.70031019890119
499
Returns: 35.66464555334774
498
Returns: 35.62890943555973
456
Returns: 34.094970407115
301
Returns: 27.708563680258436
77
Returns: 14.04835350757413
379
Returns: 31.086808347141655
397
Returns: 31.815503120981134
273
Returns: 26.390589133251336
485
Returns: 35.16128913406542
141
Returns: 18.982334962714216
223
Returns: 23.85664479104023
226
Returns: 24.016163483000092
40
Returns: 10.15502569718592
366
Returns: 30.54969259718733
14
Returns: 6.07470703125
467
Returns: 34.50332817573229
47
Returns: 10.998384260494731
420
Returns: 32.72298427933507
357
Returns: 30.172291342538323
404
Returns: 32.09439210784611
124
Returns: 17.805451132912207
120
Returns: 17.517079917337895
227
Returns: 24.069179296428636
241
Returns: 24.79871000975108
270
Returns: 26.245407540490227
181
Returns: 21.498551311248736
295
Returns: 27.43147185483054
309
Returns: 28.073765451928708
471
Returns: 34.650621434312015
90
Returns: 15.180673260956578
265
Returns: 26.001757578134757
433
Returns: 33.224981859468095
284
Returns: 26.91602091922468
438
Returns: 33.41601943423373
235
Returns: 24.488715302989895
282
Returns: 26.821245609113927
85
Returns: 14.755598421818503
215
Returns: 23.42579178681059
19
Returns: 7.047882080078125
333
Returns: 29.141923937618248
490
Returns: 35.34186390722941
112
Returns: 16.925603927123923
398
Returns: 31.85547234600768
150
Returns: 19.576592860189148
494
Returns: 35.48567691399364
475
Returns: 34.79729122306567
258
Returns: 25.65664851978682
210
Returns: 23.152372150516026
313
Returns: 28.254596261239854
237
Returns: 24.592481045798927
290
Returns: 27.198365387812444
344
Returns: 29.618594199445372
444
Returns: 33.643858862567264
470
Returns: 34.613837335124984
15
Returns: 6.2841796875
8
Returns: 4.6484375
497
Returns: 35.59317331777052
496
Returns: 35.557365296324576
489
Returns: 35.30583754239021
22
Returns: 7.568464279174805
100
Returns: 15.997436714822918
431
Returns: 33.148249799746885
473
Returns: 34.724033767859204
493
Returns: 35.449796553110524
43
Returns: 10.525167727300868
200
Returns: 22.59574008271144
487
Returns: 35.23363746561626
50
Returns: 11.339792438580922
400
Returns: 31.935310872997473
20
Returns: 7.224079132080078
478
Returns: 34.90687008439841