Statistics

Problem Statement for "LongLongTripDiv2"

Problem Statement

Limit is a flea. He can do two types of jumps: small jumps that have length 1 millimeter, and big jumps that have length B millimeters.

Limit is going to make exactly T jumps, all of them in the same direction. He would like to travel exactly D millimeters in those jumps. Is this possible?

You are given a long D, and ints T and B. Return "Possible" (quotes for clarity) if there is a combination of T jumps forward that has a total length of exactly D millimeters. Otherwise, return "Impossible".

Definition

Class:
LongLongTripDiv2
Method:
isAble
Parameters:
long, int, int
Returns:
String
Method signature:
String isAble(long D, int T, int B)
(be sure your method is public)

Constraints

  • D will be between 1 and 10^18, inclusive.
  • T will be between 1 and 1,000,000,000, inclusive.
  • B will be between 2 and 1,000,000,000, inclusive.

Examples

  1. 10

    6

    3

    Returns: "Possible"

    Limit must make 6 jumps that have a total length of 10 millimeters. This is possible: two of the jumps must be long and the other four must be short.

  2. 10

    5

    3

    Returns: "Impossible"

  3. 50

    100

    2

    Returns: "Impossible"

  4. 120

    10

    11

    Returns: "Impossible"

  5. 10

    10

    9999

    Returns: "Possible"

  6. 1000

    100

    10

    Returns: "Possible"

  7. 1000010000100001

    1100011

    1000000000

    Returns: "Possible"

  8. 12345678987654321

    111111111

    111111111

    Returns: "Possible"

  9. 561550235931654728

    770077091

    594689741

    Returns: "Impossible"

  10. 782530047792645702

    810704991

    528005295

    Returns: "Impossible"

  11. 624086603713404674

    155234367

    624336837

    Returns: "Impossible"

  12. 712848680829476726

    791137911

    583594796

    Returns: "Impossible"

  13. 100729809748786028

    698964399

    552066677

    Returns: "Impossible"

  14. 400449542141702697

    592584370

    683818647

    Returns: "Impossible"

  15. 573345591460223849

    37847150

    441873733

    Returns: "Impossible"

  16. 39847468287453969

    893600490

    35770085

    Returns: "Impossible"

  17. 648355374576745941

    193613005

    616033025

    Returns: "Impossible"

  18. 757451873003548674

    775314670

    575850467

    Returns: "Impossible"

  19. 860202583564900878

    305983574

    590060496

    Returns: "Impossible"

  20. 511436416444306

    32920090

    30133477

    Returns: "Possible"

  21. 56627120982707376

    398015298

    824514854

    Returns: "Impossible"

  22. 62953424141737776

    109294186

    601827691

    Returns: "Impossible"

  23. 313708976434406248

    627419903

    901586146

    Returns: "Impossible"

  24. 426628796717371325

    790195070

    562630216

    Returns: "Possible"

  25. 156644136483855159

    940691151

    214527417

    Returns: "Possible"

  26. 4000680273891670

    453415984

    83425307

    Returns: "Possible"

  27. 116288870684141900

    253673516

    735727312

    Returns: "Possible"

  28. 6092575699495802

    72846070

    258202895

    Returns: "Possible"

  29. 45378819282349739

    939280619

    337057631

    Returns: "Possible"

  30. 11013088164268884

    137690964

    770600833

    Returns: "Possible"

  31. 24500664552824728

    827564104

    411276082

    Returns: "Possible"

  32. 13176362220377406

    888479706

    17582926

    Returns: "Possible"

  33. 370706625832873310

    902062133

    516683284

    Returns: "Possible"

  34. 38786596395518266

    182174947

    650120450

    Returns: "Possible"

  35. 7479534912064137

    649681433

    34461209

    Returns: "Possible"

  36. 17330402299125994

    30496894

    898646176

    Returns: "Possible"

  37. 2111789993468437

    110120617

    813773048

    Returns: "Possible"

  38. 1000000000000000000

    1000000000

    1000000000

    Returns: "Possible"

  39. 1

    1

    2

    Returns: "Possible"

  40. 1000000000

    1000000000

    2

    Returns: "Possible"

  41. 1000000000000000000

    1000000000

    2

    Returns: "Impossible"

  42. 10

    100

    2

    Returns: "Impossible"

  43. 10

    6

    9

    Returns: "Impossible"

  44. 1000000000000000000

    2

    2

    Returns: "Impossible"

  45. 10000000000

    1000000000

    11

    Returns: "Possible"

  46. 1000000000000000000

    100000000

    2

    Returns: "Impossible"

  47. 100

    50

    2

    Returns: "Possible"

  48. 10

    1000000000

    10

    Returns: "Impossible"

  49. 10000000001

    10000

    2

    Returns: "Impossible"

  50. 1000000000000000000

    1000000000

    9

    Returns: "Impossible"

  51. 2000000001

    1000000000

    2

    Returns: "Impossible"

  52. 10000000000000000

    100000000

    100000000

    Returns: "Possible"

  53. 92222222222222

    1000000000

    2

    Returns: "Impossible"

  54. 12

    10

    3

    Returns: "Possible"

  55. 1000000000000000000

    999999999

    1000000000

    Returns: "Impossible"

  56. 11

    3

    2

    Returns: "Impossible"

  57. 10000

    1

    10

    Returns: "Impossible"

  58. 13211231212213268

    1000000000

    2

    Returns: "Impossible"

  59. 10

    10

    2

    Returns: "Possible"

  60. 999999999000000001

    1000000000

    1000000000

    Returns: "Possible"

  61. 10000000000

    1000000000

    10

    Returns: "Possible"

  62. 20

    9

    3

    Returns: "Impossible"

  63. 1000000000

    1000000000

    1000007

    Returns: "Possible"

  64. 1000000001

    1000000000

    2

    Returns: "Possible"

  65. 1000000000000000000

    1

    2

    Returns: "Impossible"

  66. 100000000000

    1

    2

    Returns: "Impossible"

  67. 1

    1000000000

    2

    Returns: "Impossible"

  68. 999999999999999999

    2

    9999

    Returns: "Impossible"

  69. 10

    10

    5

    Returns: "Possible"

  70. 1

    2

    2

    Returns: "Impossible"

  71. 100000000000001

    1000000000

    2

    Returns: "Impossible"

  72. 1000000000

    1000000000

    1000000000

    Returns: "Possible"

  73. 1000000000000000

    100000000

    2

    Returns: "Impossible"

  74. 1500000000

    1000000000

    2

    Returns: "Possible"

  75. 1000000000000000000

    900900000

    2

    Returns: "Impossible"

  76. 999999999999999999

    989898989

    99999

    Returns: "Impossible"

  77. 10000000000000000

    1000000000

    2

    Returns: "Impossible"

  78. 27

    9

    5

    Returns: "Impossible"

  79. 1000010000100001

    1000000000

    2

    Returns: "Impossible"

  80. 30

    10

    3

    Returns: "Possible"

  81. 5

    1

    2

    Returns: "Impossible"

  82. 5

    5

    2

    Returns: "Possible"

  83. 100

    1

    10

    Returns: "Impossible"

  84. 21

    13

    5

    Returns: "Possible"

  85. 1000000000000000000

    1000000000

    999999999

    Returns: "Impossible"

  86. 16

    7

    5

    Returns: "Impossible"

  87. 6

    2

    2

    Returns: "Impossible"

  88. 999999999999999999

    1000000000

    2

    Returns: "Impossible"

  89. 4000000000

    1000000000

    3

    Returns: "Impossible"


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: