Problem Statement
Alice and Bob are playing a game called "The Permutation Game".
The game is parameterized with the
Definition
- Class:
- ThePermutationGame
- Method:
- findMin
- Parameters:
- int
- Returns:
- int
- Method signature:
- int findMin(int N)
- (be sure your method is public)
Notes
- A permutation of the first N positive integers is a sequence of length N that contains each of the integers 1 through N exactly once. The i-th (1-indexed) element of a permutation p is denoted by p[i].
Constraints
- N will be between 1 and 100,000 inclusive.
Examples
2
Returns: 2
Bob can choose the permutations (1,2) or (2,1). If Alice chooses 1, then, Bob can choose the permutation (2,1), which would would make f(1) = 2. However, if Alice chooses 2, no matter which permutation Bob chooses, Alice will get f(2) = 1. Thus the answer in this case is 2.
3
Returns: 6
11
Returns: 27720
102
Returns: 53580071
9999
Returns: 927702802
35157
Returns: 937518076
34230
Returns: 740350604
57100
Returns: 247067771
58698
Returns: 49268119
12481
Returns: 849911685
42324
Returns: 762823246
31379
Returns: 589672269
24398
Returns: 882274344
36940
Returns: 330451934
24917
Returns: 250138819
31086
Returns: 234840781
26329
Returns: 145436481
10079
Returns: 360516388
72615
Returns: 468013463
13944
Returns: 851198691
8376
Returns: 459278786
40268
Returns: 207985004
53876
Returns: 294846859
57385
Returns: 340995703
87446
Returns: 576510380
20331
Returns: 929584200
76668
Returns: 982058946
18397
Returns: 286495927
75155
Returns: 410672060
33360
Returns: 302893413
57529
Returns: 998094308
62815
Returns: 365884096
88264
Returns: 668415225
87537
Returns: 569631445
25169
Returns: 377880881
133
Returns: 765427742
1381
Returns: 714617036
650
Returns: 179094468
301
Returns: 199546229
170
Returns: 871276406
5
Returns: 60
19640
Returns: 705613344
128
Returns: 570728460
6
Returns: 60
9508
Returns: 220585550
16
Returns: 720720
73
Returns: 497270415
42
Returns: 206169884
753
Returns: 691620754
8
Returns: 840
361
Returns: 779915945
242
Returns: 769677147
941
Returns: 665163605
16
Returns: 720720
1541
Returns: 630801461
448
Returns: 215695038
13
Returns: 360360
70
Returns: 419737080
1311
Returns: 938024783
7
Returns: 420
3
Returns: 6
3105
Returns: 588601036
89893
Returns: 594213079
19414
Returns: 63013446
32570
Returns: 965309544
14371
Returns: 63854004
12386
Returns: 608039160
75747
Returns: 248650835
3743
Returns: 67640556
30487
Returns: 823181278
19852
Returns: 397205410
3699
Returns: 654343651
70458
Returns: 168508059
16422
Returns: 786864642
49978
Returns: 739881009
30027
Returns: 662326482
577
Returns: 970663088
18061
Returns: 492843004
12240
Returns: 159347435
16738
Returns: 903923151
2040
Returns: 675966917
41511
Returns: 149417417
93731
Returns: 489330151
26656
Returns: 544162488
45741
Returns: 495256522
70174
Returns: 223695140
1337
Returns: 232134838
100000
Returns: 59814054
99990
Returns: 26863016
99991
Returns: 59814054
1
Returns: 1
32
Returns: 551882779
99999
Returns: 59814054
12345
Returns: 733823350
70523
Returns: 999268607
65536
Returns: 551585434
4
Returns: 12
98798
Returns: 786222871
96720
Returns: 477016810
9
Returns: 2520
97966
Returns: 744400308