Statistics

Problem Statement for "AddMultiply"

Problem Statement

You are given an int y. We are looking for any int[] x that satisfies the following constraints:
  • x has exactly three elements
  • ( x[0] * x[1] ) + x[2] = y
  • Each x[i] must be between -1000 and 1000, inclusive.
  • No x[i] can be equal to 0 or 1.
Find and return one such x.

If there are multiple valid solutions, you may return any of them. You may assume that for our constraints on y (specified below) at least one valid x always exists.

Definition

Class:
AddMultiply
Method:
makeExpression
Parameters:
int
Returns:
int[]
Method signature:
int[] makeExpression(int y)
(be sure your method is public)

Constraints

  • y will be between 0 and 500, inclusive.

Examples

  1. 6

    Returns: {2, 2, 2 }

    2*2 + 2 = 6 Note that this is one of many possible solutions. Another solution is: 3*3 + (-3) = 6

  2. 11

    Returns: {2, 3, 5 }

  3. 0

    Returns: {7, 10, -70 }

    Note that 0 and 1 are not allowed, thus a result like 0 * 0 + 0 would be incorrect.

  4. 500

    Returns: {-400, -3, -700 }

    Some or all of the returned numbers may be negative.

  5. 1

    Returns: {2, 2, -3 }

  6. 2

    Returns: {2, 2, -2 }

  7. 3

    Returns: {-1, -1, 2 }

  8. 4

    Returns: {-1, -1, 3 }

  9. 5

    Returns: {5, 2, -5 }

  10. 7

    Returns: {-1, -1, 6 }

  11. 8

    Returns: {-1, -1, 7 }

  12. 9

    Returns: {-1, -1, 8 }

  13. 10

    Returns: {-1, -1, 9 }

  14. 12

    Returns: {-1, -1, 11 }

  15. 13

    Returns: {-1, -1, 12 }

  16. 14

    Returns: {-1, -1, 13 }

  17. 15

    Returns: {-1, -1, 14 }

  18. 16

    Returns: {-1, -1, 15 }

  19. 17

    Returns: {-1, -1, 16 }

  20. 18

    Returns: {-1, -1, 17 }

  21. 19

    Returns: {-1, -1, 18 }

  22. 20

    Returns: {-1, -1, 19 }

  23. 31

    Returns: {-1, -1, 30 }

  24. 32

    Returns: {-1, -1, 31 }

  25. 37

    Returns: {-1, -1, 36 }

  26. 45

    Returns: {-1, -1, 44 }

  27. 58

    Returns: {-1, -1, 57 }

  28. 86

    Returns: {-1, -1, 85 }

  29. 101

    Returns: {-1, -1, 100 }

  30. 140

    Returns: {-1, -1, 139 }

  31. 141

    Returns: {-1, -1, 140 }

  32. 166

    Returns: {-1, -1, 165 }

  33. 170

    Returns: {-1, -1, 169 }

  34. 171

    Returns: {-1, -1, 170 }

  35. 172

    Returns: {-1, -1, 171 }

  36. 174

    Returns: {-1, -1, 173 }

  37. 193

    Returns: {-1, -1, 192 }

  38. 209

    Returns: {-1, -1, 208 }

  39. 216

    Returns: {-1, -1, 215 }

  40. 220

    Returns: {-1, -1, 219 }

  41. 231

    Returns: {-1, -1, 230 }

  42. 234

    Returns: {-1, -1, 233 }

  43. 238

    Returns: {-1, -1, 237 }

  44. 252

    Returns: {-1, -1, 251 }

  45. 255

    Returns: {-1, -1, 254 }

  46. 259

    Returns: {-1, -1, 258 }

  47. 290

    Returns: {-1, -1, 289 }

  48. 295

    Returns: {-1, -1, 294 }

  49. 312

    Returns: {-1, -1, 311 }

  50. 320

    Returns: {-1, -1, 319 }

  51. 329

    Returns: {-1, -1, 328 }

  52. 335

    Returns: {-1, -1, 334 }

  53. 342

    Returns: {-1, -1, 341 }

  54. 348

    Returns: {-1, -1, 347 }

  55. 350

    Returns: {-1, -1, 349 }

  56. 362

    Returns: {-1, -1, 361 }

  57. 363

    Returns: {-1, -1, 362 }

  58. 378

    Returns: {-1, -1, 377 }

  59. 389

    Returns: {-1, -1, 388 }

  60. 396

    Returns: {-1, -1, 395 }

  61. 398

    Returns: {-1, -1, 397 }

  62. 403

    Returns: {-1, -1, 402 }

  63. 404

    Returns: {-1, -1, 403 }

  64. 405

    Returns: {-1, -1, 404 }

  65. 411

    Returns: {-1, -1, 410 }

  66. 420

    Returns: {-1, -1, 419 }

  67. 421

    Returns: {-1, -1, 420 }

  68. 422

    Returns: {-1, -1, 421 }

  69. 423

    Returns: {-1, -1, 422 }

  70. 424

    Returns: {-1, -1, 423 }

  71. 450

    Returns: {-1, -1, 449 }

  72. 451

    Returns: {-1, -1, 450 }

  73. 452

    Returns: {-1, -1, 451 }

  74. 453

    Returns: {-1, -1, 452 }

  75. 454

    Returns: {-1, -1, 453 }

  76. 455

    Returns: {-1, -1, 454 }

  77. 456

    Returns: {-1, -1, 455 }

  78. 457

    Returns: {-1, -1, 456 }

  79. 458

    Returns: {-1, -1, 457 }

  80. 460

    Returns: {-1, -1, 459 }

  81. 462

    Returns: {-1, -1, 461 }

  82. 464

    Returns: {-1, -1, 463 }

  83. 465

    Returns: {-1, -1, 464 }

  84. 466

    Returns: {-1, -1, 465 }

  85. 468

    Returns: {-1, -1, 467 }

  86. 469

    Returns: {-1, -1, 468 }

  87. 483

    Returns: {-1, -1, 482 }

  88. 485

    Returns: {-1, -1, 484 }

  89. 486

    Returns: {-1, -1, 485 }

  90. 488

    Returns: {-1, -1, 487 }

  91. 490

    Returns: {-1, -1, 489 }

  92. 492

    Returns: {-1, -1, 491 }

  93. 493

    Returns: {-1, -1, 492 }

  94. 494

    Returns: {-1, -1, 493 }

  95. 495

    Returns: {-1, -1, 494 }

  96. 496

    Returns: {-1, -1, 495 }

  97. 497

    Returns: {-1, -1, 496 }

  98. 498

    Returns: {-1, -1, 497 }

  99. 499

    Returns: {-1, -1, 498 }

  100. 500

    Returns: {-400, -3, -700 }

  101. 250

    Returns: {-1, -1, 249 }

  102. 21

    Returns: {-1, -1, 20 }

  103. 50

    Returns: {-1, -1, 49 }

  104. 300

    Returns: {-1, -1, 299 }

  105. 188

    Returns: {-1, -1, 187 }

  106. 70

    Returns: {-1, -1, 69 }

  107. 100

    Returns: {-1, -1, 99 }

  108. 251

    Returns: {-1, -1, 250 }

  109. 24

    Returns: {-1, -1, 23 }


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: