Problem Statement
- x has exactly three elements
- ( x[0] * x[1] ) + x[2] = y
- Each x[i] must be between -1000 and 1000, inclusive.
- No x[i] can be equal to 0 or 1.
If there are multiple valid solutions, you may return any of them. You may assume that for our constraints on y (specified below) at least one valid x always exists.
Definition
- Class:
- AddMultiply
- Method:
- makeExpression
- Parameters:
- int
- Returns:
- int[]
- Method signature:
- int[] makeExpression(int y)
- (be sure your method is public)
Constraints
- y will be between 0 and 500, inclusive.
Examples
6
Returns: {2, 2, 2 }
2*2 + 2 = 6 Note that this is one of many possible solutions. Another solution is: 3*3 + (-3) = 6
11
Returns: {2, 3, 5 }
0
Returns: {7, 10, -70 }
Note that 0 and 1 are not allowed, thus a result like 0 * 0 + 0 would be incorrect.
500
Returns: {-400, -3, -700 }
Some or all of the returned numbers may be negative.
1
Returns: {2, 2, -3 }
2
Returns: {2, 2, -2 }
3
Returns: {-1, -1, 2 }
4
Returns: {-1, -1, 3 }
5
Returns: {5, 2, -5 }
7
Returns: {-1, -1, 6 }
8
Returns: {-1, -1, 7 }
9
Returns: {-1, -1, 8 }
10
Returns: {-1, -1, 9 }
12
Returns: {-1, -1, 11 }
13
Returns: {-1, -1, 12 }
14
Returns: {-1, -1, 13 }
15
Returns: {-1, -1, 14 }
16
Returns: {-1, -1, 15 }
17
Returns: {-1, -1, 16 }
18
Returns: {-1, -1, 17 }
19
Returns: {-1, -1, 18 }
20
Returns: {-1, -1, 19 }
31
Returns: {-1, -1, 30 }
32
Returns: {-1, -1, 31 }
37
Returns: {-1, -1, 36 }
45
Returns: {-1, -1, 44 }
58
Returns: {-1, -1, 57 }
86
Returns: {-1, -1, 85 }
101
Returns: {-1, -1, 100 }
140
Returns: {-1, -1, 139 }
141
Returns: {-1, -1, 140 }
166
Returns: {-1, -1, 165 }
170
Returns: {-1, -1, 169 }
171
Returns: {-1, -1, 170 }
172
Returns: {-1, -1, 171 }
174
Returns: {-1, -1, 173 }
193
Returns: {-1, -1, 192 }
209
Returns: {-1, -1, 208 }
216
Returns: {-1, -1, 215 }
220
Returns: {-1, -1, 219 }
231
Returns: {-1, -1, 230 }
234
Returns: {-1, -1, 233 }
238
Returns: {-1, -1, 237 }
252
Returns: {-1, -1, 251 }
255
Returns: {-1, -1, 254 }
259
Returns: {-1, -1, 258 }
290
Returns: {-1, -1, 289 }
295
Returns: {-1, -1, 294 }
312
Returns: {-1, -1, 311 }
320
Returns: {-1, -1, 319 }
329
Returns: {-1, -1, 328 }
335
Returns: {-1, -1, 334 }
342
Returns: {-1, -1, 341 }
348
Returns: {-1, -1, 347 }
350
Returns: {-1, -1, 349 }
362
Returns: {-1, -1, 361 }
363
Returns: {-1, -1, 362 }
378
Returns: {-1, -1, 377 }
389
Returns: {-1, -1, 388 }
396
Returns: {-1, -1, 395 }
398
Returns: {-1, -1, 397 }
403
Returns: {-1, -1, 402 }
404
Returns: {-1, -1, 403 }
405
Returns: {-1, -1, 404 }
411
Returns: {-1, -1, 410 }
420
Returns: {-1, -1, 419 }
421
Returns: {-1, -1, 420 }
422
Returns: {-1, -1, 421 }
423
Returns: {-1, -1, 422 }
424
Returns: {-1, -1, 423 }
450
Returns: {-1, -1, 449 }
451
Returns: {-1, -1, 450 }
452
Returns: {-1, -1, 451 }
453
Returns: {-1, -1, 452 }
454
Returns: {-1, -1, 453 }
455
Returns: {-1, -1, 454 }
456
Returns: {-1, -1, 455 }
457
Returns: {-1, -1, 456 }
458
Returns: {-1, -1, 457 }
460
Returns: {-1, -1, 459 }
462
Returns: {-1, -1, 461 }
464
Returns: {-1, -1, 463 }
465
Returns: {-1, -1, 464 }
466
Returns: {-1, -1, 465 }
468
Returns: {-1, -1, 467 }
469
Returns: {-1, -1, 468 }
483
Returns: {-1, -1, 482 }
485
Returns: {-1, -1, 484 }
486
Returns: {-1, -1, 485 }
488
Returns: {-1, -1, 487 }
490
Returns: {-1, -1, 489 }
492
Returns: {-1, -1, 491 }
493
Returns: {-1, -1, 492 }
494
Returns: {-1, -1, 493 }
495
Returns: {-1, -1, 494 }
496
Returns: {-1, -1, 495 }
497
Returns: {-1, -1, 496 }
498
Returns: {-1, -1, 497 }
499
Returns: {-1, -1, 498 }
500
Returns: {-400, -3, -700 }
250
Returns: {-1, -1, 249 }
21
Returns: {-1, -1, 20 }
50
Returns: {-1, -1, 49 }
300
Returns: {-1, -1, 299 }
188
Returns: {-1, -1, 187 }
70
Returns: {-1, -1, 69 }
100
Returns: {-1, -1, 99 }
251
Returns: {-1, -1, 250 }
24
Returns: {-1, -1, 23 }