Problem Statement
Given two positive integers x and y, their similarity S(x, y) is defined as follows: To compute S(x, y) we count all d between 0 and 9, inclusive, such that both x and y contain the digit d when written in base 10 (without any leading zeros). For example, S(1123, 220181) = 2 since both numbers contain the digit 1 and both contain the digit 2.
You are given two
Definition
- Class:
- Similars
- Method:
- maxsim
- Parameters:
- int, int
- Returns:
- int
- Method signature:
- int maxsim(int L, int R)
- (be sure your method is public)
Constraints
- R will be between 2 and 100,000, inclusive.
- L will be between 1 and R - 1, inclusive.
Examples
1
10
Returns: 1
We have S(1, 10) = 1 since both numbers contain the digit 1. All other pairs of numbers within this range have similarity 0.
1
99
Returns: 2
There are many pairs with similarity 2, for example pairs (23,32) and (38,83).
99
100
Returns: 0
Here we have only one pair (99, 100) and its similarity is 0.
1000
1010
Returns: 2
444
454
Returns: 2
130
200
Returns: 3
999
1010
Returns: 2
1
100000
Returns: 5
99861
100000
Returns: 4
123
98765
Returns: 5
12
1021
Returns: 3
4535
4600
Returns: 4
32521
33006
Returns: 5
64988
64999
Returns: 4
72321
72322
Returns: 3
4352
12521
Returns: 5
12305
12311
Returns: 4
12300
12310
Returns: 4
10000
10101
Returns: 4
99500
100000
Returns: 4
117
138
Returns: 3
11189
11191
Returns: 2
1117
11117
Returns: 5
33333
43333
Returns: 5
55555
55999
Returns: 4
55555
55599
Returns: 3
8761
18761
Returns: 5
5188
15454
Returns: 5
16875
35118
Returns: 5
414
581
Returns: 3
1449
4757
Returns: 4
1497
3720
Returns: 4
15349
76740
Returns: 5
2890
4512
Returns: 4
1114
1802
Returns: 4
34
210
Returns: 3
288
773
Returns: 3
23068
29929
Returns: 5
3
6
Returns: 0
1495
2710
Returns: 4
810
5916
Returns: 4
5541
34851
Returns: 5
17074
26817
Returns: 5
2428
4948
Returns: 4
756
15513
Returns: 5
8322
14129
Returns: 5
28637
32616
Returns: 5
1491
88575
Returns: 5
9
445
Returns: 3
4
6
Returns: 0
159
186
Returns: 3
62259
65309
Returns: 5
2
5
Returns: 0
3137
4391
Returns: 4
2007
22258
Returns: 5
44343
87716
Returns: 5
982
37122
Returns: 5
531
1030
Returns: 3
19379
88799
Returns: 5
5498
15622
Returns: 5
598
663
Returns: 3
1
10
Returns: 1
2366
2867
Returns: 4
948
3332
Returns: 4
13152
56837
Returns: 5
1866
5805
Returns: 4
81598
86963
Returns: 5
5211
6220
Returns: 4
50498
88442
Returns: 5
26605
36316
Returns: 5
3390
4949
Returns: 4
2816
4001
Returns: 4
41390
53834
Returns: 5
122
195
Returns: 3
91
182
Returns: 3
5843
60490
Returns: 5
53455
94634
Returns: 5
3457
4529
Returns: 4
111
257
Returns: 3
16929
24273
Returns: 5
937
1665
Returns: 4
290
303
Returns: 2
3614
5478
Returns: 4
38
40
Returns: 1
1453
5715
Returns: 4
123
298
Returns: 3
214
2983
Returns: 4
1
10000
Returns: 4
1
9
Returns: 0
9
99
Returns: 2
2
100000
Returns: 5
99999
100000
Returns: 0
1231
1239
Returns: 3
1234
1242
Returns: 3
98
101
Returns: 2
1
10005
Returns: 4
100
101
Returns: 2
99
101
Returns: 2
12
13
Returns: 1
19
21
Returns: 1
10000
100000
Returns: 5
122
123
Returns: 2
1
99999
Returns: 5
12
100000
Returns: 5
11
22
Returns: 2
25433
25467
Returns: 5
123
124
Returns: 2
11234
11235
Returns: 3
91
109
Returns: 2
75
76
Returns: 1
109
110
Returns: 2
1
1033
Returns: 4
121
122
Returns: 2
10
11
Returns: 1
12345
12353
Returns: 4
13
31
Returns: 2
14
15
Returns: 1
989
999
Returns: 2
98
100
Returns: 1
9000
9001
Returns: 2
1
10242
Returns: 4
58027
100000
Returns: 5
13
21
Returns: 1
21
121
Returns: 3
2345
2350
Returns: 3
1
10001
Returns: 4
122
133
Returns: 3
1024
1025
Returns: 3
1234
1237
Returns: 3
102
105
Returns: 2
129
130
Returns: 1
18
19
Returns: 1
4543
4553
Returns: 3
6997
7097
Returns: 4
998
1013
Returns: 3
100
120
Returns: 3
12552
13897
Returns: 5
89
121
Returns: 3
100
456
Returns: 3
2
11
Returns: 1
9910
10011
Returns: 3
78
79
Returns: 1
7535
91956
Returns: 5
1
1002
Returns: 3
97
98
Returns: 1
999
1001
Returns: 2
1
10010
Returns: 4