Problem Statement
The least common multiple (denoted "lcm") of a non-empty sequence of positive integers is the smallest positive integer that is divisible by each of them. For example, lcm(2)=2, lcm(4,6)=12, and lcm(1,2,3,4,5)=60.
Alice had a positive integer N. Then she chose some positive integer M that was strictly greater than N. Afterwards, she computed two values: the value A = lcm(N+1, N+2, ..., M) and the value B = lcm(1, 2, ..., M). She was surprised when she saw that A = B.
You are given the
Definition
- Class:
- MissingLCM
- Method:
- getMin
- Parameters:
- int
- Returns:
- int
- Method signature:
- int getMin(int N)
- (be sure your method is public)
Constraints
- N will be between 1 and 1,000,000, inclusive.
Examples
1
Returns: 2
Alice needs to choose an M > 1 such that lcm(2,...,M) = lcm(1,...,M). We can see M=2 is the minimum value that works, since lcm(1,2) = lcm(2) = 2.
2
Returns: 4
3
Returns: 6
We have lcm(4,5,6) = lcm(1,2,3,4,5,6) = 60.
4
Returns: 8
5
Returns: 10
42
Returns: 82
Oh... that doesn't fit the pattern.
999999
Returns: 1999966
1000000
Returns: 1999966
10
Returns: 18
100
Returns: 194
1000
Returns: 1994
10000
Returns: 19946
100000
Returns: 199982
279841
Returns: 559682
531445
Returns: 1062882
161052
Returns: 322102
161055
Returns: 322106
994012
Returns: 1988018
386181
Returns: 772346
559460
Returns: 1118918
823661
Returns: 1647302
627547
Returns: 1255094
904541
Returns: 1809062
856252
Returns: 1712498
509533
Returns: 1019042
223449
Returns: 446882
832585
Returns: 1665166
986047
Returns: 1972094
37834
Returns: 75662
33298
Returns: 66578
79002
Returns: 157978
27258
Returns: 54506
44618
Returns: 89234
6423
Returns: 12842
4836
Returns: 9662
4058
Returns: 8114
8566
Returns: 17126
6951
Returns: 13898
408
Returns: 802
395
Returns: 778
377
Returns: 746
573
Returns: 1142
54
Returns: 106
90
Returns: 178
33
Returns: 64
30
Returns: 58
23
Returns: 46
531441
Returns: 1062882
8
Returns: 16
81
Returns: 162
9
Returns: 18
28
Returns: 54
16
Returns: 32
27
Returns: 54
262144
Returns: 524288
103823
Returns: 207646
1350
Returns: 2662