Problem Statement
You are given an
Let X be the number of such identities. Compute and return the value (X modulo (10^9 + 7)).
Definition
- Class:
- PowerEquation
- Method:
- count
- Parameters:
- int
- Returns:
- int
- Method signature:
- int count(int n)
- (be sure your method is public)
Constraints
- n will be between 1 and 1,000,000,000, inclusive.
Examples
2
Returns: 6
We have these solutions: 1^1=1^1 1^1=1^2 1^2=1^1 1^2=1^2 2^1=2^1 2^2=2^2
3
Returns: 15
Now we have: 1^1=1^1 1^1=1^2 1^1=1^3 1^2=1^1 1^2=1^2 1^2=1^3 1^3=1^1 1^3=1^2 1^3=1^3 2^1=2^1 2^2=2^2 2^3=2^3 3^1=3^1 3^2=3^2 3^3=3^3
100
Returns: 21620
22306
Returns: 68467
The answer is 1000068474 mod 10^9+7.
1
Returns: 1
1000000
Returns: 222454881
1000000000
Returns: 926728539
987654321
Returns: 60968614
346100
Returns: 830705971
671985798
Returns: 722374399
10
Returns: 222
34484254
Returns: 658621951
16544
Returns: 550602880
60
Returns: 7816
5309
Returns: 56985433
87294
Returns: 275737825
8498
Returns: 145666004
78132
Returns: 239235276
1934
Returns: 7619194
4
Returns: 32
3350685
Returns: 372937314
59666967
Returns: 718887343
18788220
Returns: 715415041
168837348
Returns: 825073895
8853
Returns: 158054421
769
Returns: 1219753
6600
Returns: 87965524
458
Returns: 436242
880790354
Returns: 756891106
94
Returns: 19090
980
Returns: 1971964
478
Returns: 474418
1322
Returns: 3577236
184943
Returns: 512394309
42
Returns: 3912
7
Returns: 97
169508
Returns: 558010513
359208134
Returns: 188843463
42969
Returns: 705305216
922009774
Returns: 208808517
594949
Returns: 502242073
397
Returns: 328897
80
Returns: 13852
76545
Returns: 747319732
6
Returns: 72
73307611
Returns: 4298432
6
Returns: 72
79059676
Returns: 257992379
85
Returns: 15733
4848620
Returns: 624573242
9
Returns: 181
84
Returns: 15388
78931
Returns: 490607477
549619
Returns: 673315723
415087976
Returns: 377581203
952165868
Returns: 650976939
12140
Returns: 296785156
802109324
Returns: 28988158
602
Returns: 750196
18
Returns: 724
99935931
Returns: 483770710
118888
Returns: 323731532
18114
Returns: 659894048
3
Returns: 15
36
Returns: 2924
2518048
Returns: 865735801
3330
Returns: 22492262
79974
Returns: 822751924
9830
Returns: 194767178
5
Returns: 49
5
Returns: 49
2347312
Returns: 17494872
5737999
Returns: 141270100
893041873
Returns: 286507270
439928879
Returns: 788810451
982
Returns: 1979914
386350
Returns: 837598960
5264246
Returns: 558282306
3845
Returns: 29955409
138752129
Returns: 994885749
1516
Returns: 4695484
3150
Returns: 20139332
940
Returns: 1815344
5
Returns: 49
27
Returns: 1631
304020
Returns: 72191901
49578005
Returns: 965251237
308624
Returns: 717921134
16350
Returns: 537744214
72
Returns: 11320
5
Returns: 49
68546241
Returns: 745488555
9059605
Returns: 980403924
8
Returns: 136
5373
Returns: 58365577
6495
Returns: 85182505
734
Returns: 1112858
55098572
Returns: 12568410
76424
Returns: 710255375
629
Returns: 819025
354544346
Returns: 420450317
3730
Returns: 28197914
6
Returns: 72
10
Returns: 222
62
Returns: 8314
6803916
Returns: 949288870
67405
Returns: 111119730
402957740
Returns: 397431299
999999998
Returns: 259993157
12345678
Returns: 661323466