Problem Statement
John and Brus are wondering how many houses are visible from the city center. A house is visible if and only if there are no other houses on the line segment connecting the house and the city center. (For the purpose of this definition, each house is a single point.)
You are given the
Definition
- Class:
- TheRoundCityDiv1
- Method:
- find
- Parameters:
- int
- Returns:
- long
- Method signature:
- long find(int r)
- (be sure your method is public)
Constraints
- r will be between 1 and 1,000,000, inclusive.
Examples
1
Returns: 4
There are four houses in the city: at (0, 1), (0, -1), (1, 0), and (-1, 0). All four of them are visible from the city center.
2
Returns: 8
There are twelve houses in the city: (0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1), (0, 2), (0, -2), (2, 0), (-2, 0), The last four are not visible from the city center. For example, (0, 2) is not visible because (0, 1) is on the line segment from (0, 2) to the city center.
3
Returns: 16
There are twenty-eight houses in the city: (0, 1), (0, -1), (1, 0), (-1, 0), (0, 2), (0, -2), (2, 0), (-2, 0), (1, 1), (1, -1), (-1, 1), (-1, -1), (0, 3), (0, -3), (3, 0), (-3, 0), (1, 2), (1, -2), (-1, 2), (-1, -2), (2, 1), (2, -1), (-2, 1), (-2, -1), (2, 2), (2, -2), (-2, 2), (-2, -2). Twelve of them: (0, 2), (0, -2), (2, 0), (-2, 0), (0, 3), (0, -3), (3, 0), (-3, 0), (2, 2), (2, -2), (-2, 2), (-2, -2) are not visible from the city center.
47
Returns: 4176
96
Returns: 17592
75
Returns: 10728
86
Returns: 14120
85
Returns: 13784
17
Returns: 544
23
Returns: 1000
52
Returns: 5184
83
Returns: 13144
64
Returns: 7840
88
Returns: 14784
62
Returns: 7336
78
Returns: 11632
97
Returns: 17920
56
Returns: 6000
65
Returns: 8072
31
Returns: 1816
99
Returns: 18696
92
Returns: 16168
57
Returns: 6192
30
Returns: 1704
96
Returns: 17592
69
Returns: 9088
76
Returns: 11024
2
Returns: 8
14
Returns: 384
43
Returns: 3480
31
Returns: 1816
45
Returns: 3856
37
Returns: 2600
60
Returns: 6880
33
Returns: 2072
73
Returns: 10136
67
Returns: 8528
59
Returns: 6632
94
Returns: 16880
78
Returns: 11632
70
Returns: 9328
45
Returns: 3856
70
Returns: 9328
30
Returns: 1704
47
Returns: 4176
70
Returns: 9328
100
Returns: 19088
434396
Returns: 360390231816
927975
Returns: 1644651677048
267186
Returns: 136341720616
773085
Returns: 1141447313800
53117
Returns: 5388505280
534723
Returns: 546083570080
930352
Returns: 1653087988912
416783
Returns: 331757973904
722664
Returns: 997411148888
887088
Returns: 1502916270000
957762
Returns: 1751929325728
875578
Returns: 1464168499368
132697
Returns: 33629745016
923695
Returns: 1629515751088
943274
Returns: 1699327576472
938985
Returns: 1683909270056
999584
Returns: 1908270648336
993416
Returns: 1884793085376
948222
Returns: 1717202186416
904051
Returns: 1560943695016
988482
Returns: 1866117166216
927063
Returns: 1641420585008
970487
Returns: 1798791477896
965461
Returns: 1780208408008
962777
Returns: 1770324132144
997596
Returns: 1900687747992
1000000
Returns: 1909859313984
999999
Returns: 1909855494720