Statistics

Problem Statement for "SimpleMathProblem"

Problem Statement

You are given four positive integers a,b,c and m. Let x = bc. Calculate and return the following value: (ax mod m).

Definition

Class:
SimpleMathProblem
Method:
calculate
Parameters:
int, int, int, int
Returns:
int
Method signature:
int calculate(int a, int b, int c, int m)
(be sure your method is public)

Constraints

  • a,b,c and m will each be between 1 and 737,373,737, inclusive.

Examples

  1. 1

    1

    1

    737

    Returns: 1

    1^(1^1) modulo 737 is 1.

  2. 3

    7

    3

    123456789

    Returns: 63564408

    First we get that x = 7^3 = 343. Then we compute the answer: (3^x modulo 123456789).

  3. 12

    34

    56

    78

    Returns: 66

  4. 3737373

    7373737

    37373

    737373737

    Returns: 214080347

  5. 1

    1

    1

    2

    Returns: 1

  6. 1

    1

    2

    2

    Returns: 1

  7. 1

    2

    1

    2

    Returns: 1

  8. 1

    2

    2

    2

    Returns: 1

  9. 1

    3

    1

    2

    Returns: 1

  10. 1

    3

    2

    2

    Returns: 1

  11. 2

    1

    1

    4

    Returns: 2

  12. 2

    1

    1

    1

    Returns: 0

  13. 2

    1

    2

    4

    Returns: 2

  14. 2

    1

    2

    1

    Returns: 0

  15. 2

    2

    1

    8

    Returns: 4

  16. 2

    2

    1

    2

    Returns: 0

  17. 2

    2

    2

    32

    Returns: 16

  18. 2

    2

    2

    8

    Returns: 0

  19. 2

    3

    1

    16

    Returns: 8

  20. 2

    3

    1

    4

    Returns: 0

  21. 2

    3

    2

    1024

    Returns: 512

  22. 2

    3

    2

    256

    Returns: 0

  23. 3

    1

    1

    6

    Returns: 3

  24. 3

    1

    1

    1

    Returns: 0

  25. 3

    1

    2

    6

    Returns: 3

  26. 3

    1

    2

    1

    Returns: 0

  27. 3

    2

    1

    18

    Returns: 9

  28. 3

    2

    1

    3

    Returns: 0

  29. 3

    2

    2

    162

    Returns: 81

  30. 3

    2

    2

    27

    Returns: 0

  31. 3

    3

    1

    54

    Returns: 27

  32. 3

    3

    1

    9

    Returns: 0

  33. 3

    3

    2

    39366

    Returns: 19683

  34. 3

    3

    2

    6561

    Returns: 0

  35. 4

    3

    2

    131072

    Returns: 0

  36. 4

    3

    2

    262144

    Returns: 0

  37. 4

    3

    2

    524288

    Returns: 262144

  38. 737373737

    737373737

    737373737

    737373737

    Returns: 0

  39. 737373737

    737373737

    737373737

    737373731

    Returns: 224569275

  40. 737373737

    737373737

    737373737

    181119236

    Returns: 169635145

  41. 1

    737373737

    737373737

    98802491

    Returns: 1

  42. 1

    308278125

    582670712

    314160782

    Returns: 1

  43. 737373737

    1

    737373737

    203553290

    Returns: 126713867

  44. 12979925

    1

    311274077

    123970461

    Returns: 12979925

  45. 309015862

    1

    376622406

    88309203

    Returns: 44088253

  46. 206822987

    680725908

    1

    224972348

    Returns: 163786781

  47. 150933586

    411586059

    678105573

    150933586

    Returns: 0

  48. 646584830

    65089976

    209907606

    65089976

    Returns: 49185336

  49. 523618772

    676131385

    522877180

    522877180

    Returns: 65480532

  50. 262948113

    381040812

    381040812

    381040812

    Returns: 252805401

  51. 513245845

    109897200

    418967832

    385445802

    Returns: 55063687

  52. 449677069

    635493771

    29933568

    425421270

    Returns: 101859679

  53. 582352381

    328612129

    490361885

    466985983

    Returns: 59605062

  54. 240876894

    613516074

    350178075

    576657021

    Returns: 302794827

  55. 589819340

    108815762

    213935499

    253554401

    Returns: 11169221

  56. 200630267

    375806085

    68119788

    487831030

    Returns: 288868307

  57. 140738810

    85770777

    206174059

    6671800

    Returns: 4831800

  58. 2

    10

    10

    1024

    Returns: 0

    2^(10^10) is divisible by 1024, hence the remainder is zero.

  59. 47

    53

    912

    1

    Returns: 0

    Any integer modulo 1 is zero.

  60. 999

    33

    121213

    100000000

    Returns: 83712999

  61. 567

    1000000

    500000000

    23224

    Returns: 5993

  62. 700000000

    700000000

    700000000

    699999999

    Returns: 1

  63. 99999999

    33333333

    12121399

    100000000

    Returns: 99999999

  64. 12381232

    12312242

    12313131

    41

    Returns: 16

  65. 3737373

    77373737

    77737373

    737373737

    Returns: 597790725

  66. 3

    1

    1

    9

    Returns: 3

  67. 568

    1000000

    500000000

    23224

    Returns: 17912

  68. 3

    6

    1

    9

    Returns: 0

  69. 2

    2

    2

    4

    Returns: 0

  70. 12381232

    12312242

    12313131

    412384

    Returns: 124896

  71. 666666

    777777

    888888

    123456

    Returns: 55296

  72. 16

    666666

    777777

    24

    Returns: 16


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: