Problem Statement
The function g(n, p) is defined for all positive integers n and all primes p. Its definition is as follows:
if n is not divisible by p: g(n,p) = 0 otherwise: g(n,p) = the largest power of p that does not exceed n
The function f(n) is defined for all positive integers as follows: f(n) is the sum of g(n,p) over all primes p.
You are given an
Definition
- Class:
- SimpleMathProblemDiv1
- Method:
- calculate
- Parameters:
- long
- Returns:
- long
- Method signature:
- long calculate(long X)
- (be sure your method is public)
Notes
- You may assume that the largest possible output fits into a long.
Constraints
- X will be between 1 and 3,333,377,777, inclusive.
Examples
1
Returns: 0
8
Returns: 36
15
Returns: 128
777444111
Returns: 342683738130575177
2
Returns: 2
3
Returns: 5
4
Returns: 9
5
Returns: 14
6
Returns: 21
7
Returns: 28
9
Returns: 45
30
Returns: 518
35
Returns: 700
89
Returns: 4453
88
Returns: 4364
40
Returns: 944
951
Returns: 518261
549
Returns: 168554
669
Returns: 252713
535
Returns: 159878
617
Returns: 213423
4558
Returns: 12206178
9886
Returns: 56237130
6332
Returns: 22823991
2395
Returns: 3143609
78298
Returns: 3373110161
41373
Returns: 1012381338
73147
Returns: 2927153443
74818
Returns: 3070489928
35008
Returns: 726305765
517662
Returns: 147018695705
517080
Returns: 146721897863
852803
Returns: 416149194998
297023
Returns: 51096940813
3950328
Returns: 8746728745655
9775158
Returns: 54625604183596
3319658
Returns: 6452551133605
4485004
Returns: 11074329492874
67223642
Returns: 2643075611119206
67905677
Returns: 2706868743156309
61838822
Returns: 2235400870651969
30945529
Returns: 527510126975375
59167178
Returns: 2047635007854376
743871768
Returns: 316739447375556073
400702621
Returns: 91875180835272892
253542755
Returns: 34741944770427850
204789971
Returns: 23439598799767782
616617635
Returns: 221683308757025191
1898461266
Returns: 2061586642882203503
1627383434
Returns: 1549198167936240885
1702543013
Returns: 1689334861001660324
1661677491
Returns: 1613016782507267974
1940693304
Returns: 2143262971707200654
1987316407
Returns: 2236216164699706625
1267449406
Returns: 897905692186351026
1451670421
Returns: 1226465623568923595
1601681771
Returns: 1501480207208827573
1514002006
Returns: 1339950981029778622
2131442973
Returns: 2555900362266747569
2998099957
Returns: 5189362099103820101
2551480298
Returns: 3770912908255148536
2802768357
Returns: 4562810769962276053
2957475841
Returns: 5058082341249917206
2004552794
Returns: 2274088811224605557
2607248258
Returns: 3944571494214423011
2540726564
Returns: 3738033662370291947
2076906246
Returns: 2433619288649866963
2975043127
Returns: 5114809539839103289
3333377777
Returns: 6294700701212792329
3208733377
Returns: 5879755621198364667
3138024373
Returns: 5646149889202573866
3214603023
Returns: 5899182293665341972
3198327292
Returns: 5845321883235522358
3131222766
Returns: 5623716753944497650
3064069447
Returns: 5403127583601271120
3001041161
Returns: 5198877152586814676
3087666137
Returns: 5480230152539719133
3007258080
Returns: 5218993086628418571
3252828481
Returns: 6025813772453043356