Problem Statement
The function g(n, p) is defined for all positive integers n and all primes p. Its definition is as follows:
if n is not divisible by p: g(n,p) = 0 otherwise: g(n,p) = the largest power of p that does not exceed n
The function f(n) is defined for all positive integers as follows: f(n) is the sum of g(n,p) over all primes p.
You are given an
Definition
- Class:
- SimpleMathProblemDiv2
- Method:
- calculate
- Parameters:
- int
- Returns:
- long
- Method signature:
- long calculate(int X)
- (be sure your method is public)
Notes
- You may assume (and also see from the Examples) that the largest possible output fits into a long.
Constraints
- X will be between 1 and 444,777, inclusive.
Examples
1
Returns: 0
2
Returns: 2
3
Returns: 5
4
Returns: 9
5
Returns: 14
6
Returns: 21
7
Returns: 28
8
Returns: 36
Note that f(6) = 7, because g(6,2) = 4 and g(6,3) = 3. If you think that g(6,2) should be 2, please go back and re-read the definition of g more carefully.
9
Returns: 45
30
Returns: 518
35
Returns: 700
89
Returns: 4453
88
Returns: 4364
40
Returns: 944
95
Returns: 5039
15
Returns: 128
49
Returns: 1399
66
Returns: 2428
95
Returns: 5039
356
Returns: 72908
174
Returns: 17488
558
Returns: 174596
988
Returns: 557250
602
Returns: 203861
332
Returns: 63356
239
Returns: 31280
578
Returns: 188101
298
Returns: 50742
4137
Returns: 9930433
3731
Returns: 8142152
4774
Returns: 13396515
8183
Returns: 37759679
5008
Returns: 14730639
5176
Returns: 15720243
6203
Returns: 21997748
4173
Returns: 10118750
5170
Returns: 15688142
8085
Returns: 36908632
66807
Returns: 2392843609
40353
Returns: 965823566
39770
Returns: 939261272
39678
Returns: 935065040
31547
Returns: 584821018
18294
Returns: 184195883
24622
Returns: 360549034
25945
Returns: 401057055
47632
Returns: 1302798156
34368
Returns: 698155028
77444
Returns: 3296580744
72518
Returns: 2873189796
68751
Returns: 2553531615
70858
Returns: 2731438589
72907
Returns: 2906430082
68570
Returns: 2538604821
72080
Returns: 2836075208
72147
Returns: 2841604692
73615
Returns: 2967084916
76167
Returns: 3186637820
75249
Returns: 3107422647
81175
Returns: 3663620059
84654
Returns: 4024712278
91893
Returns: 4805284420
86279
Returns: 4199203789
87432
Returns: 4323246772
85645
Returns: 4131181548
89304
Returns: 4525029795
92356
Returns: 4855670811
87924
Returns: 4376598204
89082
Returns: 4501023274
195154
Returns: 22292308528
196695
Returns: 22665247282
135617
Returns: 10271024111
145589
Returns: 12014653219
188602
Returns: 20709943045
204633
Returns: 24597664141
222395
Returns: 29030761080
278298
Returns: 44657350457
241373
Returns: 33889873474
273147
Returns: 42951776267
374818
Returns: 79194589896
335008
Returns: 64570332383
351766
Returns: 70611074453
320341
Returns: 59327256447
373517
Returns: 78677303223
444777
Returns: 111293895799
427656
Returns: 103071672039
416954
Returns: 97971347160
426504
Returns: 102521668011
431774
Returns: 105041376565
417836
Returns: 98389292283
412442
Returns: 95831743822
444282
Returns: 111057006263
406102
Returns: 92829132562
436059
Returns: 107099977317
403760
Returns: 91723778779
100000
Returns: 5693544580