Problem Statement
- The boundary of a two-dimensional rectangle is one-dimensional (a collection of line segments), and we can measure its length.
- The boundary of a three-dimensional box is two-dimensional (a collection of rectangles), and we can measure its area.
- In the same sense, the boundary of a four-dimensional hyperbox is three-dimensional, and we can measure its volume.
You are given the
Two hyperboxes are distinct if they are not congruent. (In other words, they are distinct if we cannot rearrange the dimensions of one to get the dimensions of the other.)
Definition
- Class:
- Hyperbox
- Method:
- count
- Parameters:
- int
- Returns:
- int
- Method signature:
- int count(int volume)
- (be sure your method is public)
Constraints
- volume will be between 1 and 200,000,000, inclusive.
Examples
8
Returns: 1
The smallest possible hyperbox (i.e., the 1 x 1 x 1 x 1 hyperbox) is the only one with surface volume 8.
1234567
Returns: 0
There are no hyperboxes with integer sides and this exact surface volume.
120
Returns: 3
One of the three distinct hyperboxes with this surface volume has side lengths 1, 2, 2, and 7.
1
Returns: 0
2
Returns: 0
4
Returns: 0
6
Returns: 0
8
Returns: 1
12
Returns: 0
16
Returns: 0
36
Returns: 0
46
Returns: 0
48
Returns: 1
52
Returns: 0
54
Returns: 1
56
Returns: 2
58
Returns: 0
62
Returns: 2
64
Returns: 2
68
Returns: 1
74
Returns: 2
76
Returns: 1
82
Returns: 0
88
Returns: 2
2452361
Returns: 0
4077592
Returns: 119
8929267
Returns: 0
9470116
Returns: 74
10766894
Returns: 41
26064724
Returns: 105
26292468
Returns: 148
29567012
Returns: 160
30584374
Returns: 69
33688540
Returns: 139
40051182
Returns: 93
45713384
Returns: 247
52608872
Returns: 344
55589302
Returns: 78
58667620
Returns: 138
59307330
Returns: 143
60923520
Returns: 1734
61752760
Returns: 431
63818340
Returns: 282
64053852
Returns: 181
64151500
Returns: 355
64974488
Returns: 299
67869752
Returns: 372
67951406
Returns: 83
69858652
Returns: 127
70219948
Returns: 146
76857988
Returns: 135
83807334
Returns: 268
84712198
Returns: 67
89638134
Returns: 124
89888012
Returns: 171
91781778
Returns: 146
94770874
Returns: 138
94879204
Returns: 183
95816226
Returns: 166
96390371
Returns: 0
97398754
Returns: 75
100439752
Returns: 486
101969844
Returns: 207
102966122
Returns: 126
106160286
Returns: 154
111846388
Returns: 188
114809691
Returns: 0
118707796
Returns: 162
119154840
Returns: 884
126441214
Returns: 91
129908276
Returns: 213
130298248
Returns: 392
136447292
Returns: 189
137963137
Returns: 0
139425126
Returns: 217
140464113
Returns: 0
142991378
Returns: 150
144989600
Returns: 1191
146750383
Returns: 0
146832216
Returns: 568
149053092
Returns: 327
149730732
Returns: 386
149798542
Returns: 90
150577697
Returns: 0
151058874
Returns: 179
151769030
Returns: 174
152355432
Returns: 610
154378054
Returns: 131
155250198
Returns: 300
161323161
Returns: 0
162006192
Returns: 1106
162310888
Returns: 463
162764456
Returns: 367
168351146
Returns: 106
168418334
Returns: 141
174163200
Returns: 2121
181154904
Returns: 769
184576584
Returns: 507
187692292
Returns: 198
192396339
Returns: 0
194309033
Returns: 0
195729420
Returns: 373
196014538
Returns: 160
199764026
Returns: 207
200000000
Returns: 1414
123456
Returns: 52
196028000
Returns: 1626
8000000
Returns: 598
100000000
Returns: 1524