Statistics

Problem Statement for "Diophantine"

Problem Statement

This problem has a nonstandard time limit: 7 seconds.

Let p[] be the sequence of all primes in increasing order: p[0]=2, p[1]=3, p[2]=5, and so on.

Let D be a positive integer constant. For each i >= 0, let q[i] = p[i] * p[i+D].

Consider the following equation: V + W + X + Y = Z.

You are given ints N and D. Count the number of solutions to this equation such that V <= W <= X <= Y and all numbers V,W,X,Y,Z are in the set QN = { q[0], q[1], ..., q[N-1] }.

Definition

Class:
Diophantine
Method:
countSolutions
Parameters:
int, int
Returns:
long
Method signature:
long countSolutions(int N, int D)
(be sure your method is public)

Notes

  • A positive integer is a prime if it has exactly two positive integer divisors. Note that 1 is not a prime.

Constraints

  • N will be between 1 and 2,500, inclusive.
  • D will be between 0 and 2,500, inclusive.

Examples

  1. 15

    1

    Returns: 2

    The two solutions are: 6 + 15 + 323 + 323 = 667 6 + 143 + 221 + 1147 = 1517 Note that the first solution uses the value 323 twice.

  2. 2470

    0

    Returns: 0

    No solutions at all.

  3. 30

    500

    Returns: 1

    One solution. In it, the right-hand side of the equation is 406,279.

  4. 47

    7

    Returns: 14

  5. 1

    0

    Returns: 0

  6. 280

    2333

    Returns: 11

  7. 2500

    802

    Returns: 6315

  8. 2310

    466

    Returns: 6659

  9. 1245

    1085

    Returns: 1122

  10. 2288

    1619

    Returns: 3684

  11. 1059

    1932

    Returns: 517

  12. 32

    697

    Returns: 0

  13. 1873

    1290

    Returns: 2751

  14. 433

    1417

    Returns: 69

  15. 705

    2160

    Returns: 154

  16. 2117

    973

    Returns: 4164

  17. 2064

    1367

    Returns: 3349

  18. 749

    135

    Returns: 1010

  19. 2474

    1371

    Returns: 4993

  20. 1842

    2492

    Returns: 1661

  21. 2285

    2355

    Returns: 2725

  22. 2050

    1486

    Returns: 3023

  23. 2260

    2212

    Returns: 2912

  24. 2049

    929

    Returns: 3993

  25. 2414

    2274

    Returns: 3397

  26. 2180

    256

    Returns: 6524

  27. 1699

    91

    Returns: 5029

  28. 2473

    2285

    Returns: 3645

  29. 2416

    1035

    Returns: 5443

  30. 2129

    2472

    Returns: 2276

  31. 884

    753

    Returns: 728

  32. 362

    1924

    Returns: 30

  33. 2111

    1929

    Returns: 2750

  34. 2381

    451

    Returns: 7293

  35. 2122

    144

    Returns: 7217

  36. 2500

    15

    Returns: 10713

  37. 2500

    2500

    Returns: 3380

  38. 2262

    1583

    Returns: 3777

  39. 1182

    995

    Returns: 1030

  40. 306

    1818

    Returns: 10

  41. 2183

    1811

    Returns: 3145

  42. 1887

    813

    Returns: 3592

  43. 2191

    1447

    Returns: 3636

  44. 2500

    3

    Returns: 11191

  45. 2450

    978

    Returns: 5741

  46. 2000

    1080

    Returns: 3486

  47. 2472

    1071

    Returns: 5448

  48. 2290

    1751

    Returns: 3528

  49. 2307

    1400

    Returns: 4147

  50. 2200

    167

    Returns: 7497

  51. 2267

    2105

    Returns: 3047

  52. 2194

    1988

    Returns: 2849

  53. 2407

    1714

    Returns: 4031

  54. 2490

    991

    Returns: 5965

  55. 2395

    1706

    Returns: 4033

  56. 2247

    1278

    Returns: 4133

  57. 2500

    89

    Returns: 10473

  58. 2337

    96

    Returns: 9016

  59. 2321

    848

    Returns: 5287

  60. 2182

    2181

    Returns: 2724

  61. 2500

    0

    Returns: 0

  62. 2289

    164

    Returns: 8110

  63. 262

    403

    Returns: 57

  64. 2004

    1292

    Returns: 3160

  65. 2133

    2127

    Returns: 2710

  66. 2017

    2297

    Returns: 2144

  67. 2220

    2267

    Returns: 2754

  68. 2345

    1172

    Returns: 4808

  69. 2370

    2239

    Returns: 3246

  70. 2309

    1446

    Returns: 4164

  71. 2409

    904

    Returns: 5827

  72. 2500

    4

    Returns: 10813

  73. 1

    1947

    Returns: 0

  74. 2490

    419

    Returns: 7859

  75. 2500

    13

    Returns: 10633

  76. 2296

    1571

    Returns: 3751

  77. 1121

    339

    Returns: 1735

  78. 153

    1088

    Returns: 6

  79. 2232

    2337

    Returns: 2651

  80. 2175

    1054

    Returns: 4329

  81. 976

    1784

    Returns: 450

  82. 2482

    1972

    Returns: 3957

  83. 1048

    2239

    Returns: 395

  84. 2499

    2499

    Returns: 3509

  85. 2500

    1250

    Returns: 5327

  86. 2499

    3

    Returns: 11182

  87. 2500

    1325

    Returns: 4974


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: