Problem Statement
This problem has a nonstandard time limit: 7 seconds.
Let p[] be the sequence of all primes in increasing order: p[0]=2, p[1]=3, p[2]=5, and so on.
Let D be a positive integer constant. For each i >= 0, let q[i] = p[i] * p[i+D].
Consider the following equation: V + W + X + Y = Z.
You are given
Definition
- Class:
- Diophantine
- Method:
- countSolutions
- Parameters:
- int, int
- Returns:
- long
- Method signature:
- long countSolutions(int N, int D)
- (be sure your method is public)
Notes
- A positive integer is a prime if it has exactly two positive integer divisors. Note that 1 is not a prime.
Constraints
- N will be between 1 and 2,500, inclusive.
- D will be between 0 and 2,500, inclusive.
Examples
15
1
Returns: 2
The two solutions are: 6 + 15 + 323 + 323 = 667 6 + 143 + 221 + 1147 = 1517 Note that the first solution uses the value 323 twice.
2470
0
Returns: 0
No solutions at all.
30
500
Returns: 1
One solution. In it, the right-hand side of the equation is 406,279.
47
7
Returns: 14
1
0
Returns: 0
280
2333
Returns: 11
2500
802
Returns: 6315
2310
466
Returns: 6659
1245
1085
Returns: 1122
2288
1619
Returns: 3684
1059
1932
Returns: 517
32
697
Returns: 0
1873
1290
Returns: 2751
433
1417
Returns: 69
705
2160
Returns: 154
2117
973
Returns: 4164
2064
1367
Returns: 3349
749
135
Returns: 1010
2474
1371
Returns: 4993
1842
2492
Returns: 1661
2285
2355
Returns: 2725
2050
1486
Returns: 3023
2260
2212
Returns: 2912
2049
929
Returns: 3993
2414
2274
Returns: 3397
2180
256
Returns: 6524
1699
91
Returns: 5029
2473
2285
Returns: 3645
2416
1035
Returns: 5443
2129
2472
Returns: 2276
884
753
Returns: 728
362
1924
Returns: 30
2111
1929
Returns: 2750
2381
451
Returns: 7293
2122
144
Returns: 7217
2500
15
Returns: 10713
2500
2500
Returns: 3380
2262
1583
Returns: 3777
1182
995
Returns: 1030
306
1818
Returns: 10
2183
1811
Returns: 3145
1887
813
Returns: 3592
2191
1447
Returns: 3636
2500
3
Returns: 11191
2450
978
Returns: 5741
2000
1080
Returns: 3486
2472
1071
Returns: 5448
2290
1751
Returns: 3528
2307
1400
Returns: 4147
2200
167
Returns: 7497
2267
2105
Returns: 3047
2194
1988
Returns: 2849
2407
1714
Returns: 4031
2490
991
Returns: 5965
2395
1706
Returns: 4033
2247
1278
Returns: 4133
2500
89
Returns: 10473
2337
96
Returns: 9016
2321
848
Returns: 5287
2182
2181
Returns: 2724
2500
0
Returns: 0
2289
164
Returns: 8110
262
403
Returns: 57
2004
1292
Returns: 3160
2133
2127
Returns: 2710
2017
2297
Returns: 2144
2220
2267
Returns: 2754
2345
1172
Returns: 4808
2370
2239
Returns: 3246
2309
1446
Returns: 4164
2409
904
Returns: 5827
2500
4
Returns: 10813
1
1947
Returns: 0
2490
419
Returns: 7859
2500
13
Returns: 10633
2296
1571
Returns: 3751
1121
339
Returns: 1735
153
1088
Returns: 6
2232
2337
Returns: 2651
2175
1054
Returns: 4329
976
1784
Returns: 450
2482
1972
Returns: 3957
1048
2239
Returns: 395
2499
2499
Returns: 3509
2500
1250
Returns: 5327
2499
3
Returns: 11182
2500
1325
Returns: 4974