Statistics

Problem Statement for "PlusCastle"

Problem Statement

Given count plus signs ('+'), arrange them in a way that maximizes the number of closed figures. Assume that horizontally or vertically adjacent plus signs touch each other.

For example, the following arrangement of 8 plus signs contains three closed figures (squares, each formed by parts of four + signs):

++++
++++

The following arrangement contains 10 plus signs but only one closed figure (a 2x3 rectangle with some short line segments on the inside):

++++
+  +
++++

And the following arrangement of 6 plus signs contains no closed figures at all:

+ + +
 + ++

Compute and return the largest number of closed figures that can be produced using exactly count plus signs.

Definition

Class:
PlusCastle
Method:
maximiseClosedFigures
Parameters:
int
Returns:
int
Method signature:
int maximiseClosedFigures(int k)
(be sure your method is public)

Constraints

  • count will be between 1 and 1,000,000,000, inclusive

Examples

  1. 546

    Returns: 500

  2. 992

    Returns: 930

  3. 555

    Returns: 508

  4. 5

    Returns: 1

  5. 980

    Returns: 918

  6. 980

    Returns: 918

  7. 125

    Returns: 103

  8. 528

    Returns: 483

  9. 729

    Returns: 676

  10. 981

    Returns: 919

  11. 956

    Returns: 895

  12. 13

    Returns: 6

  13. 536

    Returns: 490

  14. 250

    Returns: 219

  15. 677

    Returns: 625

  16. 851

    Returns: 793

  17. 601

    Returns: 552

  18. 419

    Returns: 379

  19. 476

    Returns: 433

  20. 471

    Returns: 428

  21. 176111

    Returns: 175272

  22. 581335

    Returns: 579811

  23. 702358

    Returns: 700682

  24. 702007

    Returns: 700332

  25. 825252

    Returns: 823436

  26. 952303

    Returns: 950352

  27. 4136

    Returns: 4008

  28. 219608

    Returns: 218671

  29. 399517

    Returns: 398253

  30. 521776

    Returns: 520332

  31. 428582

    Returns: 427273

  32. 708713

    Returns: 707030

  33. 593466

    Returns: 591926

  34. 992061

    Returns: 990069

  35. 526748

    Returns: 525297

  36. 203142

    Returns: 202241

  37. 133712

    Returns: 132981

  38. 124299

    Returns: 123594

  39. 882825

    Returns: 880946

  40. 675357

    Returns: 673714

  41. 549222

    Returns: 547740

  42. 581924

    Returns: 580399

  43. 43423

    Returns: 43007

  44. 613556

    Returns: 611990

  45. 245819

    Returns: 244828

  46. 401316

    Returns: 400050

  47. 671109

    Returns: 669471

  48. 894433

    Returns: 892542

  49. 324990

    Returns: 323850

  50. 988223

    Returns: 986235

  51. 963733

    Returns: 961770

  52. 113040

    Returns: 112368

  53. 937685

    Returns: 935749

  54. 699705

    Returns: 698033

  55. 364254

    Returns: 363047

  56. 340354

    Returns: 339188

  57. 196695

    Returns: 195808

  58. 824364

    Returns: 822549

  59. 81699

    Returns: 81128

  60. 817928

    Returns: 816120

  61. 177002140

    Returns: 176975532

  62. 180608681

    Returns: 180581803

  63. 871223508

    Returns: 871164476

  64. 340434466

    Returns: 340397565

  65. 858265902

    Returns: 858207310

  66. 610026110

    Returns: 609976713

  67. 409461583

    Returns: 409421113

  68. 891436319

    Returns: 891376606

  69. 660218991

    Returns: 660167602

  70. 549786700

    Returns: 549739805

  71. 999909754

    Returns: 999846512

  72. 606379991

    Returns: 606330742

  73. 551388513

    Returns: 551341550

  74. 252587979

    Returns: 252556193

  75. 213483450

    Returns: 213454228

  76. 638270295

    Returns: 638219767

  77. 181104029

    Returns: 181077115

  78. 955745807

    Returns: 955683977

  79. 820566647

    Returns: 820509356

  80. 878105811

    Returns: 878046546

  81. 231949657

    Returns: 231919198

  82. 945624090

    Returns: 945562588

  83. 576376399

    Returns: 576328384

  84. 145626178

    Returns: 145602043

  85. 333453630

    Returns: 333417109

  86. 973841188

    Returns: 973778776

  87. 888104013

    Returns: 888044411

  88. 421826453

    Returns: 421785377

  89. 644740114

    Returns: 644689331

  90. 595299005

    Returns: 595250208

  91. 359189466

    Returns: 359151562

  92. 350442765

    Returns: 350405325

  93. 264892429

    Returns: 264859878

  94. 139282275

    Returns: 139258672

  95. 501570573

    Returns: 501525782

  96. 815198144

    Returns: 815141041

  97. 728587480

    Returns: 728533496

  98. 287783887

    Returns: 287749959

  99. 549772992

    Returns: 549726098

  100. 261796623

    Returns: 261764263

  101. 9

    Returns: 4

    The following arrangement maximises the number of closed figures: +++ +++ +++

  102. 6

    Returns: 2

    The following arrangement maximises the number of closed figures: +++ +++

  103. 1000000000

    Returns: 999936755

  104. 898680485

    Returns: 898620529

  105. 11

    Returns: 5

  106. 36

    Returns: 25

  107. 7

    Returns: 2

  108. 1

    Returns: 0

  109. 15

    Returns: 8

  110. 3

    Returns: 0

  111. 14

    Returns: 7

  112. 49

    Returns: 36

  113. 60

    Returns: 45

  114. 18

    Returns: 10

  115. 12

    Returns: 6

  116. 33

    Returns: 22

  117. 20

    Returns: 12

  118. 9890

    Returns: 9692

  119. 21

    Returns: 12


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: