Problem Statement
We call a number a palindrome if it reads the same from left to right as it does from right to left. For example, some palindromic numbers are 6, 11, 121, 666, 100001, and 123454321. Note that the number 47740 is not a palindrome (as you are not allowed to have unnecessary leading zeros).
Elly has the integer X. Now she wants to find the lowest integer 1 ⤠Y ⤠1,000, such that the product X * Y is a palindrome (if there is such a number).Let's look at several examples:
- If X = 42, then Y is 6 (42 * 6 = 252).
- If X = 121, then Y = 1 (121 * 1 = 121).
- If X = 1337, then Y = 143 (1337 * 143 = 191191).
- If X = 13, then Y = 38 (13 * 38 = 494).
- If X = 100, then no Y can make it a palindrome.
- If X = 39325, then Y = 1337 would make it a palindrome (39325 * 1337 = 52577525), but this Y isn't in the bounds [1, 1000].
Definition
- Class:
- EllysPalMulDiv2
- Method:
- getMin
- Parameters:
- int
- Returns:
- int
- Method signature:
- int getMin(int X)
- (be sure your method is public)
Constraints
- X will be between 1 and 100,000, inclusive.
Examples
42
Returns: 6
121
Returns: 1
1337
Returns: 143
13
Returns: 38
100
Returns: -1
39325
Returns: -1
2019
Returns: 819
21951
Returns: -1
70794
Returns: -1
1
Returns: 1
3
Returns: 1
7
Returns: 1
10
Returns: -1
420
Returns: -1
12340
Returns: -1
100000
Returns: -1
8296
Returns: 746
15373
Returns: -1
18730
Returns: -1
19962
Returns: -1
22591
Returns: 337
37114
Returns: -1
37543
Returns: 19
41230
Returns: -1
46415
Returns: -1
48677
Returns: 79
58955
Returns: -1
67211
Returns: 117
67573
Returns: -1
69066
Returns: -1
77271
Returns: -1
80421
Returns: -1
89015
Returns: -1
91379
Returns: 803
94951
Returns: -1
97982
Returns: -1
22011
Returns: -1
1137
Returns: -1
63734
Returns: -1
5939
Returns: -1
4424
Returns: -1
7161
Returns: -1
68937
Returns: -1
60434
Returns: -1
99091
Returns: -1
66623
Returns: -1
61094
Returns: 33
29857
Returns: 274
46148
Returns: 913
83373
Returns: 715
78839
Returns: 19
36009
Returns: 242
92459
Returns: 28
42956
Returns: 114
41924
Returns: 11
8677
Returns: 532
73051
Returns: 181
48106
Returns: 168
68587
Returns: 11
9538
Returns: 7
24442
Returns: 1
36261
Returns: 197
97735
Returns: 535
82797
Returns: 861
85646
Returns: 257
4998
Returns: 44
4816
Returns: 999
63382
Returns: 998
7711
Returns: 997
6806
Returns: 996
8967
Returns: 994
43538
Returns: 993
2346
Returns: 992
6506
Returns: 991
4406
Returns: 989
8546
Returns: 988
99501
Returns: 979
98813
Returns: 983
98911
Returns: 979
98087
Returns: 987
98411
Returns: 979
97821
Returns: 979
98329
Returns: 971
97321
Returns: 979
95051
Returns: 999
96731
Returns: 979
11583
Returns: -1
23605
Returns: -1
38718
Returns: -1
40405
Returns: -1
53555
Returns: -1
67635
Returns: -1
70328
Returns: -1
80595
Returns: -1
94514
Returns: -1
99225
Returns: -1
8181
Returns: -1
29403
Returns: -1
44955
Returns: -1
58806
Returns: -1
73629
Returns: -1
98901
Returns: -1