Problem Statement
A prime number is an integer greater than 1 that has no positive divisors other than 1 and itself. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, ...
It is known that no non-constant polynomial function P(n) exists that evaluates to a prime number for all integers n. But there are some famous quadratic polynomials that are prime for all non-negative integers less than M (M depends on the polynomial).
You will be given
Definition
- Class:
- PrimePolynom
- Method:
- reveal
- Parameters:
- int, int, int
- Returns:
- int
- Method signature:
- int reveal(int A, int B, int C)
- (be sure your method is public)
Constraints
- A will be between 1 and 10000, inclusive.
- B will be between -10000 and 10000, inclusive.
- C will be between -10000 and 10000, inclusive.
Examples
1
-1
41
Returns: 41
This is one of the famous polynomials.
1
1
41
Returns: 40
1
1
-13
Returns: 0
No negative numbers are prime.
1
-15
97
Returns: 48
1
-3
43
Returns: 42
1
3
43
Returns: 39
1
-5
47
Returns: 43
1
5
47
Returns: 38
1
-7
53
Returns: 44
1
7
53
Returns: 37
1
-9
61
Returns: 45
1
9
61
Returns: 36
1
-11
71
Returns: 46
1
11
71
Returns: 35
1
-13
83
Returns: 47
2
-24
101
Returns: 35
1
-17
113
Returns: 49
2
-28
127
Returns: 36
1
-19
131
Returns: 50
1
-21
151
Returns: 51
2
-32
157
Returns: 37
1
-23
173
Returns: 52
2
-36
191
Returns: 38
1
-25
197
Returns: 53
6
-66
211
Returns: 35
1
-27
223
Returns: 54
2
-40
229
Returns: 39
1
-29
251
Returns: 55
2
-44
271
Returns: 40
1
-31
281
Returns: 56
6
-78
283
Returns: 36
979
1617
61
Returns: 10
528
-1452
5471
Returns: 10
7138
-6688
3461
Returns: 10
3092
-2046
6491
Returns: 10
1047
6501
6101
Returns: 12
9761
-7483
2659
Returns: 10
5611
6477
193
Returns: 11
7856
-7654
6451
Returns: 10
3533
-2921
7069
Returns: 11
2298
-5130
7121
Returns: 11
9820
680
8039
Returns: 10
2646
1428
1123
Returns: 10
525
-3465
6883
Returns: 11
1115
4665
5897
Returns: 10
464
-3304
6703
Returns: 11
2147
-2059
2293
Returns: 10
164
654
7499
Returns: 10
2321
-449
7867
Returns: 10
3851
-2631
5351
Returns: 11
214
4484
353
Returns: 14
397
8169
6151
Returns: 11
1764
-1974
2423
Returns: 10
5753
5765
6469
Returns: 10
157
537
8467
Returns: 11
3437
-7161
7253
Returns: 10
730
1250
2897
Returns: 11
8664
-4260
113
Returns: 11
744
-1566
4703
Returns: 11
7818
852
4111
Returns: 10
2313
-7443
7213
Returns: 10
6429
1461
1453
Returns: 11
1211
-6605
8923
Returns: 10
3561
-1155
3533
Returns: 12
914
-1532
1471
Returns: 12
8143
-9673
5231
Returns: 10
5795
-6005
409
Returns: 10
857
-751
8761
Returns: 11
148
1644
3877
Returns: 16
7880
-8200
1627
Returns: 11
31
3935
8273
Returns: 11
10000
10000
10000
Returns: 0
10000
-10000
-10000
Returns: 0
10000
10000
9973
Returns: 1
10000
-10000
9973
Returns: 2
1
0
0
Returns: 0
1
-1
0
Returns: 0
1
-1
1
Returns: 0
1
-1
2
Returns: 2
1
-1
3
Returns: 3
9921
2667
6029
Returns: 20
9684
-2190
9437
Returns: 24
1
-79
1601
Returns: 80
The largest possible answer.
1
-59
911
Returns: 70
1
-61
971
Returns: 71
1
-63
1033
Returns: 72
1
-65
1097
Returns: 73
1
-67
1163
Returns: 74
1
-69
1231
Returns: 75
1
-71
1301
Returns: 76
1
-73
1373
Returns: 77
1
-75
1447
Returns: 78
1
-77
1523
Returns: 79
2
-88
997
Returns: 51
6
-162
1123
Returns: 43
9
-471
6203
Returns: 40
6
-342
4903
Returns: 58
4
-158
1601
Returns: 40
2
-112
1597
Returns: 57
1
-1
41
Returns: 41
1
1
-13
Returns: 0
1
-1
0
Returns: 0
1
1
11
Returns: 10
1
1
2
Returns: 1
12
12
-4
Returns: 0
10
-9
0
Returns: 0
1
1
3
Returns: 2
1
1
1
Returns: 0
1
-1
1
Returns: 0
1
1
4
Returns: 0
1
-79
1601
Returns: 80
100
0
0
Returns: 0
2
-2
1
Returns: 0
1
1
0
Returns: 0
1
0
1
Returns: 0
1
-3
2
Returns: 1
1
0
4
Returns: 0
1
1
9
Returns: 0
1
1
12
Returns: 0
2
0
4
Returns: 0
9934
3456
234
Returns: 0
10000
9973
5673
Returns: 0
10000
10000
10000
Returns: 0
1
-1
2
Returns: 2
10000
9971
5379
Returns: 0
3
0
4
Returns: 0
1007
0
2
Returns: 2
1
-2
2
Returns: 1