Problem Statement
Create a class PowerDigit that contains a method digitK that is given x, y, and k and that returns the k-th digit (an integer in the range 0 to 9 inclusive) in x to the power y. If there is no k-th digit in x to the power y return -1.
Definition
- Class:
- PowerDigit
- Method:
- digitK
- Parameters:
- int, int, int
- Returns:
- int
- Method signature:
- int digitK(int x, int y, int k)
- (be sure your method is public)
Constraints
- x is between 0 and 10,000, inclusive.
- y is between 1 and 10,000, inclusive.
- k is between 0 and 4, inclusive.
Examples
2
10
1
Returns: 2
2^10 = 1024 so the digit 1 is 2.
2
10
4
Returns: -1
1024 does not have a digit 4 (the 1 in 1024 is digit 3)
2
1000
0
Returns: 6
2^1000 is a very large number. But digit 0 is predictable since with succeeding powers it follows the sequence 2, 4, 8, 6, 2, 4, 8, 6, 2, ....
10
2
1
Returns: 0
10
10
1
Returns: 0
10000
10000
4
Returns: 0
9999
10000
4
Returns: 0
0
969
0
Returns: 0
0
969
1
Returns: -1
3
5
2
Returns: 2
3
5
3
Returns: -1
9731
1
4
Returns: -1
9731
1
3
Returns: 9
6782
7891
0
Returns: 8
6782
5555
3
Returns: 5
1005
2
3
Returns: 0
2102
3360
1
Returns: 7
6951
8535
3
Returns: 5
5131
6864
2
Returns: 7
5734
5777
0
Returns: 4
3478
8042
4
Returns: 0
9316
2275
3
Returns: 5
4244
3862
2
Returns: 3
9982
4435
4
Returns: 2
9019
75
0
Returns: 9
6316
7358
2
Returns: 6
9991
4534
1
Returns: 6
6132
4186
2
Returns: 0
4622
1776
3
Returns: 9
3965
3532
4
Returns: 4
1776
7006
3
Returns: 3
475
7758
0
Returns: 5
5363
6584
1
Returns: 6
5736
2844
2
Returns: 8
8139
8268
4
Returns: 6
4768
2331
0
Returns: 2
7129
8541
1
Returns: 2
4505
9203
4
Returns: 1
7788
8919
1
Returns: 5
2188
8354
4
Returns: 0
6801
7403
2
Returns: 4
8307
6544
2
Returns: 0
8053
8470
3
Returns: 5
6886
6404
3
Returns: 8
1940
9633
2
Returns: 0
7734
6324
4
Returns: 0
134
2789
0
Returns: 4
62
9236
1
Returns: 1
9157
5789
0
Returns: 7
4148
5620
4
Returns: 0
4249
2810
1
Returns: 0
8835
9696
4
Returns: 9
351
9837
2
Returns: 9
128
117
1
Returns: 8
4529
9087
0
Returns: 9
295
7924
4
Returns: 9
5155
5512
3
Returns: 0
9978
9516
1
Returns: 9
8256
1522
4
Returns: 5
9234
8259
2
Returns: 2
8815
6259
2
Returns: 3
7583
1912
2
Returns: 1
2899
8961
4
Returns: 8
740
6987
0
Returns: 0
2709
3993
2
Returns: 2
1737
2278
4
Returns: 4
8395
9049
1
Returns: 7
5764
60
3
Returns: 2
7134
2203
0
Returns: 4
1372
7384
3
Returns: 5
6321
2500
1
Returns: 0
4626
1821
2
Returns: 3
8807
1085
1
Returns: 0
2919
8794
3
Returns: 3
5052
8938
0
Returns: 4
3023
2163
4
Returns: 6
7985
9753
4
Returns: 4
5760
2906
1
Returns: 0
2158
1192
3
Returns: 6
6742
4278
1
Returns: 8
3348
5573
4
Returns: 2
412
266
1
Returns: 8
6358
3077
2
Returns: 8
5917
7146
3
Returns: 0
5367
3800
3
Returns: 4
5853
1005
4
Returns: 0
0
10
0
Returns: 0
0
1
0
Returns: 0
0
10000
4
Returns: -1
0
2
0
Returns: 0
0
666
0
Returns: 0
0
5
0
Returns: 0
0
10000
0
Returns: 0
2
20
4
Returns: 4
9
1
0
Returns: 9
0
100
0
Returns: 0
10000
10000
4
Returns: 0
10000
1
4
Returns: 1
0
1000
0
Returns: 0
0
3
0
Returns: 0
10
10000
1
Returns: 0
0
1000
4
Returns: -1
0
7
0
Returns: 0
100
1
2
Returns: 1
1000
2
4
Returns: 0
9997
9999
3
Returns: 3
10
2
2
Returns: 1
10
1
1
Returns: 1
0
10
4
Returns: -1
5330
6874
4
Returns: 0
999
1
3
Returns: -1
10
4
4
Returns: 1
2
16
4
Returns: 6
1000
10000
4
Returns: 0
4847
9909
4
Returns: 1
10000
1
1
Returns: 0
100
8
4
Returns: 0
10
3
0
Returns: 0
1817
1808
4
Returns: 5