Statistics

Problem Statement for "BedroomFloor"

Problem Statement

You have decided to put new floor tiles on your bedroom floor. Consider an infinite pattern made of 1x5 wooden panels as in the picture below. The top-left corner of the picture has coordinates (0, 0). X coordinates increase from left to right, and y coordinates increase from top to bottom.


You have chosen a rectangular area within this infinite pattern that matches the exact size of your bedroom. The top-left corner of the rectangle is at (x1, y1) and the bottom-right corner is at (x2, y2). You want to reproduce this section on your bedroom floor.


The store that sells wooden floor panels only carries 1x5 panels. You can cut panels to get smaller panels, but you can't glue panels together to get larger ones. For example, you can cut a 1x5 panel to get one 1x3 panel and one 1x2 panel, or two 1x2 panel and one 1x1 panel, etc.




The picture above shows the rectangular area (8, 5, 20, 16). You need twenty-three 1x5 panels, six 1x2 panels and five 1x1 panels. You have to buy total of 27 panels to make these.


You are given ints x1, y1, x2 and y2. Return the minimum number of panels you must buy at the store to produce the pattern in the given rectangular area.

Definition

Class:
BedroomFloor
Method:
numberOfSticks
Parameters:
int, int, int, int
Returns:
long
Method signature:
long numberOfSticks(int x1, int y1, int x2, int y2)
(be sure your method is public)

Notes

  • You can throw away any part of a panel that you don't need.

Constraints

  • x1, y1, x2 and x2 will be between 0 and 1000000, inclusive.
  • x2 will be strictly greater than x1.
  • y2 will be strictly greater than y1.

Examples

  1. 0

    0

    5

    5

    Returns: 5

    This rectangular area contains five 1x5 panels.

  2. 0

    0

    10

    2

    Returns: 5

    This rectangular area contains two 1x5 panels and five 1x2 panels. We have to buy 5 panels to make these.

  3. 2

    2

    8

    8

    Returns: 12

    This rectangle contains twelve 1x3 panels. We can't glue panels together, so we have to buy 12 panels.

  4. 8

    5

    20

    16

    Returns: 27

    The example depicted in the problem statement.

  5. 0

    0

    1000000

    1000000

    Returns: 200000000000

  6. 9

    3

    10

    9

    Returns: 2

  7. 101

    102

    203

    204

    Returns: 2142

  8. 1

    1

    2

    2

    Returns: 1

  9. 12

    37

    89

    83

    Returns: 753

  10. 49

    51

    64

    70

    Returns: 58

  11. 32

    2

    75

    31

    Returns: 259

  12. 68

    21

    78

    94

    Returns: 148

  13. 73

    36

    74

    97

    Returns: 13

  14. 10

    82

    15

    91

    Returns: 9

  15. 80

    83

    87

    88

    Returns: 7

  16. 42

    34

    67

    80

    Returns: 230

  17. 66

    79

    68

    98

    Returns: 9

  18. 27

    56

    74

    69

    Returns: 136

  19. 58

    85

    62

    86

    Returns: 1

  20. 17

    2

    21

    66

    Returns: 58

  21. 42

    91

    91

    95

    Returns: 45

  22. 24

    23

    77

    88

    Returns: 689

  23. 71

    15

    75

    76

    Returns: 54

  24. 26

    44

    49

    48

    Returns: 21

  25. 36

    77

    75

    81

    Returns: 36

  26. 24

    7

    26

    60

    Returns: 22

  27. 53

    26

    62

    41

    Returns: 28

  28. 36

    59

    79

    83

    Returns: 216

  29. 0

    39

    64

    64

    Returns: 322

  30. 19

    79

    64

    82

    Returns: 27

  31. 615446

    163644

    749490

    650135

    Returns: 13042275165

  32. 321707

    271981

    634146

    453664

    Returns: 11353051623

  33. 94514

    373398

    504724

    692624

    Returns: 26190001024

  34. 532129

    292948

    654675

    356541

    Returns: 1558613556

  35. 270876

    199737

    749362

    878413

    Returns: 64947516434

  36. 334703

    463001

    849526

    939461

    Returns: 49058513316

  37. 177768

    453617

    938416

    956955

    Returns: 76572609734

  38. 851663

    776821

    888567

    943688

    Returns: 1231630486

  39. 825156

    475253

    948036

    598772

    Returns: 3035615232

  40. 339763

    786347

    433350

    978569

    Returns: 3597910353

  41. 168821

    456163

    844707

    936819

    Returns: 64973905725

  42. 759046

    16775

    992749

    710361

    Returns: 32418741139

  43. 970271

    859014

    998515

    877826

    Returns: 106265226

  44. 553328

    159457

    696612

    382583

    Returns: 6394085141

  45. 615868

    774738

    823539

    865654

    Returns: 3776168115

  46. 180432

    231705

    746417

    928042

    Returns: 78823287689

  47. 535905

    131492

    895196

    915257

    Returns: 56319942123

  48. 620673

    50521

    700563

    431891

    Returns: 6093529860

  49. 819262

    401220

    939252

    726504

    Returns: 7806177431

  50. 245975

    47960

    471041

    855069

    Returns: 36330558839

  51. 319836

    198500

    832177

    903900

    Returns: 72281174090

  52. 446945

    123155

    830881

    924441

    Returns: 61528508340

  53. 169374

    473311

    373539

    499159

    Returns: 1055492217

  54. 520038

    828436

    527848

    907168

    Returns: 122981727

  55. 400514

    924669

    719526

    953442

    Returns: 1835786456

  56. 2282

    18669

    462561

    118692

    Returns: 9207697284

  57. 189023

    53547

    889895

    398667

    Returns: 48377006184

  58. 259624

    740923

    265248

    920593

    Returns: 202110783

  59. 363687

    865797

    511521

    877930

    Returns: 358764765

  60. 581910

    771045

    763835

    961963

    Returns: 6946587814

  61. 170148

    981582

    961220

    984368

    Returns: 441101190

  62. 646630

    343131

    696966

    512509

    Returns: 1705162202

  63. 575419

    501044

    734755

    960723

    Returns: 14648682629

  64. 945345

    57113

    977501

    837110

    Returns: 5016316707

  65. 917486

    610702

    952849

    914047

    Returns: 2145498517

  66. 177100

    867939

    220713

    949260

    Returns: 709342457

  67. 224275

    789663

    654529

    840762

    Returns: 4397157965

  68. 361188

    394953

    946983

    501011

    Returns: 12425649222

  69. 426976

    12306

    757402

    637240

    Returns: 41299015160

  70. 476643

    819298

    816047

    885033

    Returns: 4462150962

  71. 76315

    202130

    728241

    892697

    Returns: 90039716409

  72. 811965

    37600

    861948

    837565

    Returns: 7997090111

  73. 689047

    229317

    861501

    830793

    Returns: 20745517550

  74. 580150

    266661

    824902

    645306

    Returns: 18534843140

  75. 272094

    274291

    590527

    581202

    Returns: 19546150512

  76. 341095

    856415

    783791

    944642

    Returns: 7811561311

  77. 612593

    765276

    614601

    809232

    Returns: 17652730

  78. 132678

    77197

    961955

    125990

    Returns: 8092738629

  79. 121098

    82827

    426303

    595423

    Returns: 31289494518

  80. 0

    0

    1

    1000000

    Returns: 200000

  81. 0

    0

    1000000

    1

    Returns: 200000

  82. 9

    12

    51

    55

    Returns: 362

  83. 32

    53

    57

    85

    Returns: 161

  84. 23

    40

    65

    64

    Returns: 207

  85. 39

    42

    45

    89

    Returns: 57

  86. 3

    63

    30

    76

    Returns: 71

  87. 9

    4

    94

    42

    Returns: 646

  88. 9

    4

    34

    52

    Returns: 240

  89. 19

    11

    40

    52

    Returns: 173

  90. 2

    3

    999777

    999777

    Returns: 199909910148

  91. 7

    17

    999987

    999982

    Returns: 199989000140

  92. 1

    6

    999998

    999992

    Returns: 199996800007

  93. 7

    8

    999996

    999999

    Returns: 199996000020

  94. 8

    2

    999999

    999996

    Returns: 199997000011

  95. 4353

    4568

    34567

    56778

    Returns: 315499809

  96. 2

    1

    999473

    999982

    Returns: 199890702056

  97. 77

    79

    98721

    97148

    Returns: 1915074458

  98. 8

    4

    999993

    999997

    Returns: 199995600021

  99. 2

    1

    999997

    999996

    Returns: 199998000006

  100. 2

    2

    4

    4

    Returns: 1

  101. 19

    4126

    987642

    874231

    Returns: 171867142083

  102. 3

    9

    11

    13

    Returns: 7

  103. 2

    8

    999997

    999924

    Returns: 199982350083

  104. 81

    93

    99871

    97971

    Returns: 1953449124

  105. 1

    2

    4

    500003

    Returns: 400001

  106. 1

    1

    3

    3

    Returns: 1

  107. 4

    0

    14

    5

    Returns: 10

  108. 2

    0

    7

    1

    Returns: 1

  109. 0

    0

    300013

    300006

    Returns: 18001170016

  110. 1

    2

    999987

    999986

    Returns: 199994000045

  111. 1

    1

    4

    4

    Returns: 3

  112. 6

    1

    17

    7

    Returns: 16

  113. 2

    2

    3

    3

    Returns: 1

  114. 2

    0

    999991

    999991

    Returns: 199996000020

  115. 1

    1

    4

    999999

    Returns: 799999

  116. 1

    0

    6

    1

    Returns: 1

  117. 1

    1

    2

    3

    Returns: 1

  118. 13

    12

    60

    26

    Returns: 134

  119. 1

    2

    999998

    999996

    Returns: 199998600001

  120. 3

    3

    14

    4

    Returns: 3

  121. 2

    0

    7

    8

    Returns: 10

  122. 5

    4

    8

    6

    Returns: 2

  123. 4

    5

    46

    22

    Returns: 143

  124. 3

    0

    8

    1

    Returns: 1

  125. 0

    1

    4

    6

    Returns: 4

  126. 3

    0

    6

    1

    Returns: 1

  127. 0

    3

    1

    8

    Returns: 1

  128. 2

    0

    11

    5

    Returns: 10

  129. 9

    2

    13

    6

    Returns: 4


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: