Statistics

Problem Statement for "PreprimeNumbers"

Problem Statement

A number is preprime if it has exactly 4 positive integer divisors. For example, 6 is preprime because its divisors are 1, 2, 3, and 6. The integers 6, 8, 10, 14 form the beginning of an infinite sequence of preprime numbers. Find the n-th element of this sequence, where n is a 1-based index.

Definition

Class:
PreprimeNumbers
Method:
nthNumber
Parameters:
int
Returns:
int
Method signature:
int nthNumber(int n)
(be sure your method is public)

Constraints

  • n will be between 1 and 1000000, inclusive.

Examples

  1. 2

    Returns: 8

    The beginning of an infinite sequence of preprime numbers is: 6, 8, 10, 14, ... The second number is 8.

  2. 4

    Returns: 14

    The beginning of an infinite sequence of preprime numbers is: 6, 8, 10, 14, ... The fourth number is 14.

  3. 24

    Returns: 77

  4. 43765

    Returns: 193539

  5. 1

    Returns: 6

  6. 2

    Returns: 8

  7. 3

    Returns: 10

  8. 4

    Returns: 14

  9. 5

    Returns: 15

  10. 6

    Returns: 21

  11. 7

    Returns: 22

  12. 8

    Returns: 26

  13. 9

    Returns: 27

  14. 10

    Returns: 33

  15. 11

    Returns: 34

  16. 12

    Returns: 35

  17. 13

    Returns: 38

  18. 14

    Returns: 39

  19. 15

    Returns: 46

  20. 16

    Returns: 51

  21. 17

    Returns: 55

  22. 18

    Returns: 57

  23. 19

    Returns: 58

  24. 20

    Returns: 62

  25. 436472

    Returns: 2151109

  26. 373964

    Returns: 1829787

  27. 112934

    Returns: 523027

  28. 284400

    Returns: 1374419

  29. 236747

    Returns: 1134723

  30. 75652

    Returns: 343747

  31. 29484

    Returns: 127741

  32. 557000

    Returns: 2774578

  33. 779955

    Returns: 3943781

  34. 287497

    Returns: 1390163

  35. 577875

    Returns: 2883721

  36. 111503

    Returns: 515855

  37. 754527

    Returns: 3809129

  38. 73017

    Returns: 331199

  39. 223366

    Returns: 1067033

  40. 103448

    Returns: 476939

  41. 866949

    Returns: 4402573

  42. 877603

    Returns: 4459943

  43. 292424

    Returns: 1415091

  44. 357207

    Returns: 1743974

  45. 999991

    Returns: 5111398

  46. 999992

    Returns: 5111411

  47. 999993

    Returns: 5111417

  48. 999994

    Returns: 5111422

  49. 999995

    Returns: 5111427

  50. 999996

    Returns: 5111429

  51. 999997

    Returns: 5111431

  52. 999998

    Returns: 5111437

  53. 999999

    Returns: 5111441

  54. 1000000

    Returns: 5111443

  55. 1000000

    Returns: 5111443

  56. 999983

    Returns: 5111357

  57. 500000

    Returns: 2478478

  58. 43765

    Returns: 193539

  59. 999999

    Returns: 5111441

  60. 100000

    Returns: 460011

  61. 990008

    Returns: 5058439

  62. 10000

    Returns: 41037

  63. 888888

    Returns: 4519839

  64. 4

    Returns: 14

  65. 999997

    Returns: 5111431

  66. 987654

    Returns: 5045882

  67. 1000000

    Returns: 5111443

  68. 999983

    Returns: 5111357

  69. 500000

    Returns: 2478478

  70. 43765

    Returns: 193539

  71. 999999

    Returns: 5111441

  72. 100000

    Returns: 460011

  73. 990008

    Returns: 5058439

  74. 10000

    Returns: 41037

  75. 888888

    Returns: 4519839

  76. 4

    Returns: 14

  77. 999997

    Returns: 5111431

  78. 987654

    Returns: 5045882


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: