Statistics

Problem Statement for "TheEquation"

Problem Statement

You are given three positive integers, X, Y and P. Return the least sum of two positive integers a and b such that P is a divisor of a*X+b*Y.

Definition

Class:
TheEquation
Method:
leastSum
Parameters:
int, int, int
Returns:
int
Method signature:
int leastSum(int X, int Y, int P)
(be sure your method is public)

Notes

  • The answer is never greater than 2*P: if a = P and b = P, then P is definitely a divisor of a*X+b*Y.

Constraints

  • X, Y and P will each be between 1 and 1000, inclusive.

Examples

  1. 2

    6

    5

    Returns: 3

    When a=2 and b=1, a*X+b*Y is 10, which is a multiple of P=5. No other valid pair of values for a and b has a smaller sum.

  2. 5

    5

    5

    Returns: 2

    Don't forget that a and b must be positive.

  3. 998

    999

    1000

    Returns: 501

  4. 1

    1

    1000

    Returns: 1000

  5. 1000

    1000

    999

    Returns: 999

  6. 347

    873

    1000

    Returns: 34

  7. 43

    345

    1

    Returns: 2

  8. 32

    1

    1

    Returns: 2

  9. 2

    2

    3

    Returns: 3

  10. 1000

    999

    1000

    Returns: 1001

  11. 6

    9

    3

    Returns: 2

  12. 4

    8

    12

    Returns: 2

  13. 123

    123

    124

    Returns: 124

  14. 234

    534

    346

    Returns: 20

  15. 1000

    999

    123

    Returns: 8

  16. 345

    23

    546

    Returns: 42

  17. 373

    457

    234

    Returns: 6

  18. 23

    422

    12

    Returns: 3

  19. 234

    33

    456

    Returns: 11

  20. 45

    763

    186

    Returns: 10

  21. 196

    106

    40

    Returns: 5

  22. 760

    81

    939

    Returns: 23

  23. 1

    124

    183

    Returns: 33

  24. 10

    1

    12

    Returns: 3

  25. 830

    25

    1

    Returns: 2

  26. 27

    18

    2

    Returns: 3

  27. 335

    468

    42

    Returns: 7

  28. 725

    170

    501

    Returns: 33

  29. 963

    359

    479

    Returns: 21

  30. 146

    706

    465

    Returns: 70

  31. 962

    828

    282

    Returns: 20

  32. 943

    996

    492

    Returns: 53

  33. 392

    437

    828

    Returns: 27

  34. 154

    903

    605

    Returns: 29

  35. 422

    383

    293

    Returns: 28

  36. 896

    719

    717

    Returns: 9

  37. 772

    727

    448

    Returns: 13

  38. 913

    870

    539

    Returns: 20

  39. 36

    300

    668

    Returns: 16

  40. 812

    704

    895

    Returns: 37

  41. 674

    334

    323

    Returns: 17

  42. 712

    142

    665

    Returns: 95

  43. 548

    869

    254

    Returns: 3

  44. 758

    663

    645

    Returns: 20

  45. 724

    860

    38

    Returns: 5

  46. 779

    530

    742

    Returns: 107

  47. 191

    36

    317

    Returns: 9

  48. 107

    289

    843

    Returns: 59

  49. 265

    943

    41

    Returns: 42

  50. 806

    447

    649

    Returns: 27

  51. 371

    730

    891

    Returns: 58

  52. 1

    1

    1

    Returns: 2

  53. 5

    3

    2

    Returns: 2

  54. 10

    1

    10

    Returns: 11

  55. 4

    3

    1

    Returns: 2

  56. 5

    5

    100

    Returns: 20

  57. 1

    2

    7

    Returns: 4

  58. 1000

    1

    1000

    Returns: 1001

  59. 3

    3

    3

    Returns: 2

  60. 342

    234

    34

    Returns: 3

  61. 5

    2

    1

    Returns: 2

  62. 3

    2

    2

    Returns: 3

  63. 6

    2

    5

    Returns: 3

  64. 5

    1

    5

    Returns: 6

  65. 3

    4

    13

    Returns: 4

  66. 2

    3

    1000

    Returns: 334

  67. 1

    7

    7

    Returns: 8

  68. 1

    2

    2

    Returns: 3

  69. 1

    4

    1

    Returns: 2


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: