Problem Statement
You are going to stick the number of your room on the door. The shop near your house suggests wonderful sets of plastic digits. Each set contains exactly ten digits - one of each digit between 0 and 9, inclusive. Return the number of sets required to write your room number. Note that 6 can be used as 9 and vice versa.
Definition
- Class:
- RoomNumber
- Method:
- numberOfSets
- Parameters:
- int
- Returns:
- int
- Method signature:
- int numberOfSets(int roomNumber)
- (be sure your method is public)
Constraints
- roomNumber will be between 1 and 1,000,000, inclusive.
Examples
122
Returns: 2
Two sets are required because each set contains only one '2' digit.
9999
Returns: 2
Each set contains one '6' digit and one '9' digit. '6' could be used as '9' and therefore two sets are enough.
12635
Returns: 1
888888
Returns: 6
735002
Returns: 2
440460
Returns: 3
585822
Returns: 2
108639
Returns: 1
144223
Returns: 2
646333
Returns: 3
754660
Returns: 1
549217
Returns: 1
620471
Returns: 1
279356
Returns: 1
456075
Returns: 2
14437
Returns: 2
791767
Returns: 3
848186
Returns: 3
980575
Returns: 2
168211
Returns: 3
728103
Returns: 1
797707
Returns: 4
580943
Returns: 1
359478
Returns: 1
19180
Returns: 2
199086
Returns: 2
60086
Returns: 2
96969
Returns: 3
861680
Returns: 2
610198
Returns: 2
686899
Returns: 2
669181
Returns: 2
911861
Returns: 3
916801
Returns: 2
199181
Returns: 3
886808
Returns: 4
668198
Returns: 2
118909
Returns: 2
116111
Returns: 5
181999
Returns: 2
991006
Returns: 2
811108
Returns: 3
916069
Returns: 2
100001
Returns: 4
801969
Returns: 2
169961
Returns: 2
666616
Returns: 3
699196
Returns: 3
909660
Returns: 2
160911
Returns: 3
610669
Returns: 2
868969
Returns: 2
108666
Returns: 2
616166
Returns: 2
188600
Returns: 2
666896
Returns: 3
601699
Returns: 2
666966
Returns: 3
686899
Returns: 2
169968
Returns: 2
861696
Returns: 2
606666
Returns: 3
166196
Returns: 2
808896
Returns: 3
1
Returns: 1
5
Returns: 1
6
Returns: 1
9
Returns: 1
10
Returns: 1
100
Returns: 2
1000
Returns: 3
100000
Returns: 5
1000000
Returns: 6
999999
Returns: 3
888888
Returns: 6
996661
Returns: 3
9611
Returns: 2
11
Returns: 2
66
Returns: 1
99
Returns: 1
69
Returns: 1
96
Returns: 1
6900
Returns: 2
99000
Returns: 3
660
Returns: 1
88
Returns: 2
100011
Returns: 3
666
Returns: 2
399999
Returns: 3
99999
Returns: 3
969696
Returns: 3
669
Returns: 2
999
Returns: 2
6669
Returns: 2
69126
Returns: 2
669999
Returns: 3
99666
Returns: 3
69999
Returns: 3
99996
Returns: 3
10001
Returns: 3
120969
Returns: 2
200000
Returns: 5
696
Returns: 2
996666
Returns: 3
666999
Returns: 3
99966
Returns: 3
777771
Returns: 5
6661
Returns: 2
6699
Returns: 2
1166
Returns: 2
10000
Returns: 4
12696
Returns: 2
6666
Returns: 2
66699
Returns: 3
55669
Returns: 2
166699
Returns: 3
1669
Returns: 2
68
Returns: 1
878887
Returns: 4
1696
Returns: 2
699
Returns: 2
66666
Returns: 3
888666
Returns: 3
333033
Returns: 5
777666
Returns: 3
6692
Returns: 2
969
Returns: 2
119999
Returns: 2
666666
Returns: 3
66999
Returns: 3
9966
Returns: 2
63636
Returns: 2
666699
Returns: 3
16699
Returns: 2
226669
Returns: 2
19966
Returns: 2
12000
Returns: 3
1969
Returns: 2
8899
Returns: 2
123696
Returns: 2
111666
Returns: 3
999966
Returns: 3
123666
Returns: 2
111222
Returns: 3
669996
Returns: 3
6677
Returns: 2
7766
Returns: 2
666777
Returns: 3