Statistics

Problem Statement for "Chomp"

Problem Statement

The game Chomp starts with a grid 3 cells high and N cells wide. Two players take turns selecting a remaining cell in the grid, and chomping (removing) all the cells to the right and above the selected cell (including the chosen one). The player who chomps the lower-leftmost cell loses the game. Here is a sample of two moves in the game:
3 XX                          XX                    
2 XXXX    => chomp(4,1) =>    XXX  => chomp(1,2) => 
1 XXXXX                       XXX                      XXX
  12345                       12345                    12345 
Determine which player wins if each player plays optimally, and how many total (for both players combined) turns it takes (the last move is the losing move). The player who will win when playing optimally plays to win as quickly as possible, while the player who is destined to lose plays to make the game last as long as possible. If player 1 will win, return the total number of moves required. Otherwise, return the negation of the number of moves required.

Definition

Class:
Chomp
Method:
moves
Parameters:
int
Returns:
int
Method signature:
int moves(int N)
(be sure your method is public)

Constraints

  • N will be between 1 and 100, inclusive.

Examples

  1. 1

    Returns: 2

    The optimal game is simple: X . . X => . => . X X .

  2. 2

    Returns: 6

  3. 3

    Returns: 6

  4. 4

    Returns: 8

  5. 5

    Returns: 12

  6. 6

    Returns: 12

  7. 7

    Returns: 16

  8. 8

    Returns: 16

  9. 9

    Returns: 22

  10. 10

    Returns: 20

  11. 11

    Returns: 22

  12. 12

    Returns: 28

  13. 13

    Returns: 26

  14. 14

    Returns: 34

  15. 15

    Returns: 30

  16. 16

    Returns: 32

  17. 17

    Returns: 38

  18. 18

    Returns: 36

  19. 19

    Returns: 44

  20. 20

    Returns: 40

  21. 21

    Returns: 42

  22. 22

    Returns: 52

  23. 23

    Returns: 54

  24. 24

    Returns: 48

  25. 25

    Returns: 50

  26. 26

    Returns: 60

  27. 27

    Returns: 54

  28. 28

    Returns: 56

  29. 29

    Returns: 66

  30. 30

    Returns: 60

  31. 31

    Returns: 70

  32. 32

    Returns: 64

  33. 33

    Returns: 76

  34. 34

    Returns: 68

  35. 35

    Returns: 70

  36. 36

    Returns: 82

  37. 37

    Returns: 74

  38. 38

    Returns: 88

  39. 39

    Returns: 78

  40. 40

    Returns: 80

  41. 41

    Returns: 92

  42. 42

    Returns: 84

  43. 43

    Returns: 98

  44. 44

    Returns: 88

  45. 45

    Returns: 90

  46. 46

    Returns: 106

  47. 47

    Returns: 108

  48. 48

    Returns: 96

  49. 49

    Returns: 98

  50. 50

    Returns: 114

  51. 51

    Returns: 102

  52. 52

    Returns: 120

  53. 53

    Returns: 106

  54. 54

    Returns: 108

  55. 55

    Returns: 124

  56. 56

    Returns: 112

  57. 57

    Returns: 114

  58. 58

    Returns: 130

  59. 59

    Returns: 118

  60. 60

    Returns: 120

  61. 61

    Returns: 136

  62. 62

    Returns: 142

  63. 63

    Returns: 126

  64. 64

    Returns: 128

  65. 65

    Returns: 146

  66. 66

    Returns: 132

  67. 67

    Returns: 152

  68. 68

    Returns: 136

  69. 69

    Returns: 158

  70. 70

    Returns: 140

  71. 71

    Returns: 160

  72. 72

    Returns: 144

  73. 73

    Returns: 146

  74. 74

    Returns: 148

  75. 75

    Returns: 168

  76. 76

    Returns: 152

  77. 77

    Returns: 174

  78. 78

    Returns: 156

  79. 79

    Returns: 176

  80. 80

    Returns: 160

  81. 81

    Returns: 182

  82. 82

    Returns: 164

  83. 83

    Returns: 166

  84. 84

    Returns: 190

  85. 85

    Returns: 170

  86. 86

    Returns: 194

  87. 87

    Returns: 174

  88. 88

    Returns: 178

  89. 89

    Returns: 178

  90. 90

    Returns: 202

  91. 91

    Returns: 206

  92. 92

    Returns: 184

  93. 93

    Returns: 186

  94. 94

    Returns: 212

  95. 95

    Returns: 190

  96. 96

    Returns: 192

  97. 97

    Returns: 218

  98. 98

    Returns: 196

  99. 99

    Returns: 224

  100. 100

    Returns: 200


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: