Problem Statement
3 XX XX 2 XXXX => chomp(4,1) => XXX => chomp(1,2) => 1 XXXXX XXX XXX 12345 12345 12345Determine which player wins if each player plays optimally, and how many total (for both players combined) turns it takes (the last move is the losing move). The player who will win when playing optimally plays to win as quickly as possible, while the player who is destined to lose plays to make the game last as long as possible. If player 1 will win, return the total number of moves required. Otherwise, return the negation of the number of moves required.
Definition
- Class:
- Chomp
- Method:
- moves
- Parameters:
- int
- Returns:
- int
- Method signature:
- int moves(int N)
- (be sure your method is public)
Constraints
- N will be between 1 and 100, inclusive.
Examples
1
Returns: 2
The optimal game is simple: X . . X => . => . X X .
2
Returns: 6
3
Returns: 6
4
Returns: 8
5
Returns: 12
6
Returns: 12
7
Returns: 16
8
Returns: 16
9
Returns: 22
10
Returns: 20
11
Returns: 22
12
Returns: 28
13
Returns: 26
14
Returns: 34
15
Returns: 30
16
Returns: 32
17
Returns: 38
18
Returns: 36
19
Returns: 44
20
Returns: 40
21
Returns: 42
22
Returns: 52
23
Returns: 54
24
Returns: 48
25
Returns: 50
26
Returns: 60
27
Returns: 54
28
Returns: 56
29
Returns: 66
30
Returns: 60
31
Returns: 70
32
Returns: 64
33
Returns: 76
34
Returns: 68
35
Returns: 70
36
Returns: 82
37
Returns: 74
38
Returns: 88
39
Returns: 78
40
Returns: 80
41
Returns: 92
42
Returns: 84
43
Returns: 98
44
Returns: 88
45
Returns: 90
46
Returns: 106
47
Returns: 108
48
Returns: 96
49
Returns: 98
50
Returns: 114
51
Returns: 102
52
Returns: 120
53
Returns: 106
54
Returns: 108
55
Returns: 124
56
Returns: 112
57
Returns: 114
58
Returns: 130
59
Returns: 118
60
Returns: 120
61
Returns: 136
62
Returns: 142
63
Returns: 126
64
Returns: 128
65
Returns: 146
66
Returns: 132
67
Returns: 152
68
Returns: 136
69
Returns: 158
70
Returns: 140
71
Returns: 160
72
Returns: 144
73
Returns: 146
74
Returns: 148
75
Returns: 168
76
Returns: 152
77
Returns: 174
78
Returns: 156
79
Returns: 176
80
Returns: 160
81
Returns: 182
82
Returns: 164
83
Returns: 166
84
Returns: 190
85
Returns: 170
86
Returns: 194
87
Returns: 174
88
Returns: 178
89
Returns: 178
90
Returns: 202
91
Returns: 206
92
Returns: 184
93
Returns: 186
94
Returns: 212
95
Returns: 190
96
Returns: 192
97
Returns: 218
98
Returns: 196
99
Returns: 224
100
Returns: 200