Statistics

Problem Statement for "PersistentNumber"

Problem Statement

Given a number x, we can define p(x) as the product of the digits of x. We can then form a sequence x, p(x), p(p(x))... The persistence of x is then defined as the index (0-based) of the first single digit number in the sequence. For example, using 99, we get the sequence 99, 9*9 = 81, 8*1 = 8. Thus, the persistence of 99 is 2. You will be given n, and you must return its persistence.

Definition

Class:
PersistentNumber
Method:
getPersistence
Parameters:
int
Returns:
int
Method signature:
int getPersistence(int n)
(be sure your method is public)

Constraints

  • n will be between 0 and 2,000,000,000, inclusive.

Examples

  1. 99

    Returns: 2

    The example from the problem statement.

  2. 268

    Returns: 4

    The sequence here is 268, 96, 54, 20, 0.

  3. 6

    Returns: 0

    6 is already a single-digit number.

  4. 68889789

    Returns: 3

  5. 86898

    Returns: 7

  6. 438939648

    Returns: 9

  7. 999888664

    Returns: 3

  8. 1999826842

    Returns: 9

  9. 1804289383

    Returns: 1

  10. 846930886

    Returns: 1

  11. 1681692777

    Returns: 5

  12. 1714636915

    Returns: 2

  13. 1957747793

    Returns: 2

  14. 424238335

    Returns: 2

  15. 719885386

    Returns: 2

  16. 596516649

    Returns: 2

  17. 1189641421

    Returns: 4

  18. 44897763

    Returns: 2

  19. 1131176229

    Returns: 3

  20. 749241873

    Returns: 8

  21. 1632621729

    Returns: 3

  22. 1141616124

    Returns: 3

  23. 1998898814

    Returns: 5

  24. 1947346619

    Returns: 5

  25. 791698927

    Returns: 4

  26. 1117142618

    Returns: 6

  27. 434248626

    Returns: 4

  28. 1431419379

    Returns: 4

  29. 476667372

    Returns: 5

  30. 296864819

    Returns: 5

  31. 1111783898

    Returns: 5

  32. 1344247686

    Returns: 5

  33. 474613996

    Returns: 5

  34. 77211388

    Returns: 6

  35. 733327814

    Returns: 7

  36. 1669679262

    Returns: 6

  37. 164826621

    Returns: 7

  38. 717293418

    Returns: 7

  39. 67874133

    Returns: 7

  40. 1424321892

    Returns: 7

  41. 993683397

    Returns: 8

  42. 1999337836

    Returns: 8

  43. 1137638147

    Returns: 7

  44. 384696634

    Returns: 8

  45. 1743768897

    Returns: 8

  46. 894661689

    Returns: 9

  47. 362447374

    Returns: 8

  48. 232787891

    Returns: 8

  49. 1698842299

    Returns: 9

  50. 928398892

    Returns: 9

  51. 983866662

    Returns: 9

  52. 1896918466

    Returns: 9

  53. 349638498

    Returns: 9

  54. 4

    Returns: 0

  55. 9

    Returns: 0

  56. 0

    Returns: 0

  57. 1234567890

    Returns: 1

  58. 10

    Returns: 1

  59. 99

    Returns: 2

  60. 6

    Returns: 0

  61. 25

    Returns: 2

  62. 9

    Returns: 0

  63. 1043

    Returns: 1

  64. 0

    Returns: 0

  65. 33

    Returns: 1

  66. 11

    Returns: 1

  67. 268

    Returns: 4

  68. 1099

    Returns: 1

  69. 1

    Returns: 0

  70. 52

    Returns: 2

  71. 41025

    Returns: 1


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: