Problem Statement
Definition
- Class:
- PointsOnCircle
- Method:
- count
- Parameters:
- int
- Returns:
- long
- Method signature:
- long count(int r)
- (be sure your method is public)
Constraints
- r will be between 1 and 2*10^9, inclusive.
Examples
1
Returns: 4
The only lattice points on the circle are (0, 1), (1, 0), (-1, 0), (0, -1).
2000000000
Returns: 76
3
Returns: 4
The number of lattice points on the circle of radius 3 is the same as the number of integer solutions of the equation x^2 + y^2 = 9. Using the formula from the problem statement we can calculate this number as 4*(d1(9) - d3(9)). It is easy to see that d1(9) = 2 (divisors 1 and 9) and d3(9) = 3 (divisor 3). So the answer is 4*(2 - 1) = 4.
1053
Returns: 12
3511
Returns: 4
1800000000
Returns: 68
1610802055
Returns: 36
967726946
Returns: 12
1956400514
Returns: 12
687035084
Returns: 4
780165554
Returns: 4
1520671607
Returns: 108
614461065
Returns: 36
262169838
Returns: 4
1906812072
Returns: 12
1084579707
Returns: 36
1591193796
Returns: 12
826600552
Returns: 12
229633213
Returns: 4
567776442
Returns: 12
286623121
Returns: 4
1805253983
Returns: 36
598848701
Returns: 12
44602633
Returns: 12
602726579
Returns: 36
1117197514
Returns: 12
382256389
Returns: 12
36664725
Returns: 60
1099684835
Returns: 12
706889153
Returns: 12
871482254
Returns: 12
1294084788
Returns: 4
1652131677
Returns: 12
575427533
Returns: 4
1188230396
Returns: 4
1076750517
Returns: 4
605404020
Returns: 36
1311801911
Returns: 4
690533042
Returns: 12
1935565234
Returns: 4
431791902
Returns: 12
1124142170
Returns: 108
1879000545
Returns: 36
993697882
Returns: 36
1886788488
Returns: 108
1370968819
Returns: 12
1803071380
Returns: 12
1727833033
Returns: 12
665340066
Returns: 12
592442990
Returns: 12
1967262149
Returns: 12
249420882
Returns: 12
558096052
Returns: 4
1041616440
Returns: 12
737417579
Returns: 4
85927249
Returns: 36
2
Returns: 4
1024
Returns: 4
5
Returns: 12
225
Returns: 20
101
Returns: 12
703096443
Returns: 4
1021530510
Returns: 324
132049
Returns: 12
32045
Returns: 324
160225
Returns: 540
801125
Returns: 756
1185665
Returns: 972
5928325
Returns: 1620
29641625
Returns: 2268
48612265
Returns: 2916
1745944200
Returns: 180
243061325
Returns: 4860
1999999973
Returns: 12
1999999943
Returns: 4
1998179401
Returns: 20
1999073521
Returns: 4
1215306625
Returns: 6804
1000000000
Returns: 76
1999999997
Returns: 36
200000000
Returns: 68
1073741818
Returns: 12
12345678
Returns: 12
1999999999
Returns: 12
1803601800
Returns: 100
199999999
Returns: 36
1998756466
Returns: 12
1234567891
Returns: 4
1999998989
Returns: 4
1000000007
Returns: 4
1999999117
Returns: 12
1999954997
Returns: 12
1900105489
Returns: 12
1999999990
Returns: 108
1000000011
Returns: 36
1991090304
Returns: 4
25
Returns: 20
67664141
Returns: 12
1232424243
Returns: 12
239017
Returns: 12
1999999913
Returns: 12
1000036819
Returns: 4
1915351513
Returns: 12
688294827
Returns: 20
1000000009
Returns: 12
1073741824
Returns: 4
391252
Returns: 12
1000000829
Returns: 12
1868114
Returns: 12
1259749573
Returns: 12
1765092169
Returns: 20
1931045213
Returns: 12
1997333137
Returns: 12
941474533
Returns: 12
999999937
Returns: 12
1003917915
Returns: 108
1900000005
Returns: 12
309522
Returns: 12
21
Returns: 4
654729075
Returns: 180
51755357
Returns: 12
46580625
Returns: 180
1990000003
Returns: 4
199785857
Returns: 12
1389605779
Returns: 4