Statistics

Problem Statement for "MinDifference"

Problem Statement

You are given numbers A0, X, Y, M and n. Generate a list A of length n according to the following recurrence relation:
A[0] = A0
A[i] = (A[i - 1] * X + Y) MOD M, for 0 < i < n

Return the minimal absolute difference between any two elements of A.

Definition

Class:
MinDifference
Method:
closestElements
Parameters:
int, int, int, int, int
Returns:
int
Method signature:
int closestElements(int A0, int X, int Y, int M, int n)
(be sure your method is public)

Constraints

  • A0, X, Y, M will each be between 1 and 10000, inclusive.
  • n will be between 2 and 10000, inclusive.

Examples

  1. 3

    7

    1

    101

    5

    Returns: 6

    The elements of the list are {3, 22, 54, 76, 28}. The minimal difference is between elements 22 and 28.

  2. 3

    9

    8

    32

    8

    Returns: 0

    All elements are the same.

  3. 67

    13

    17

    4003

    23

    Returns: 14

  4. 1

    1221

    3553

    9889

    11

    Returns: 275

  5. 1

    1

    1

    2

    10000

    Returns: 0

  6. 123

    7655

    651

    6565

    10000

    Returns: 0

  7. 1

    2

    3

    4

    5

    Returns: 0

  8. 872

    765

    876

    876

    786

    Returns: 0

  9. 5432

    4321

    321

    21

    2

    Returns: 5412

  10. 10

    1

    10

    10000

    20

    Returns: 10

  11. 6661

    4289

    2621

    337

    3

    Returns: 79

  12. 6571

    5407

    19

    4903

    8

    Returns: 3

  13. 5791

    1367

    3613

    2531

    6

    Returns: 155

  14. 4547

    9767

    8971

    7057

    5

    Returns: 84

  15. 3391

    6679

    6379

    7043

    6

    Returns: 35

  16. 6983

    7541

    7351

    6793

    30

    Returns: 4

  17. 6761

    2609

    577

    7547

    75

    Returns: 1

  18. 1319

    5683

    2287

    8737

    90

    Returns: 2

  19. 1151

    1619

    1321

    9437

    61

    Returns: 2

  20. 1567

    5003

    9661

    8929

    43

    Returns: 14

  21. 7247

    4547

    2237

    2411

    903

    Returns: 1

  22. 7757

    3889

    2657

    251

    765

    Returns: 0

  23. 613

    9227

    3767

    3559

    611

    Returns: 0

  24. 4231

    9533

    7681

    3067

    821

    Returns: 1

  25. 7877

    5623

    2273

    9413

    344

    Returns: 1

  26. 7547

    8747

    7547

    8599

    6410

    Returns: 1

  27. 8821

    1861

    4943

    6091

    1177

    Returns: 0

  28. 29

    2063

    5351

    2143

    7719

    Returns: 0

  29. 919

    6803

    3593

    683

    5936

    Returns: 0

  30. 7297

    2693

    5407

    9859

    8673

    Returns: 0

  31. 8396

    7408

    1583

    1483

    6094

    Returns: 0

  32. 7616

    5264

    1789

    6911

    9288

    Returns: 0

  33. 6716

    4543

    5393

    8941

    2810

    Returns: 0

  34. 9822

    5989

    9613

    1861

    7678

    Returns: 0

  35. 2322

    1076

    2477

    4451

    5820

    Returns: 0

  36. 8422

    5091

    8221

    8377

    315

    Returns: 1

  37. 6262

    7395

    8167

    5099

    664

    Returns: 1

  38. 5533

    4896

    3299

    9547

    523

    Returns: 1

  39. 7455

    3925

    5483

    1091

    285

    Returns: 0

  40. 8110

    3852

    281

    8093

    581

    Returns: 1

  41. 8455

    4271

    1733

    53

    99

    Returns: 0

  42. 2762

    5752

    67

    5507

    94

    Returns: 1

  43. 4054

    5336

    8663

    2341

    44

    Returns: 2

  44. 6996

    9961

    1549

    3329

    89

    Returns: 1

  45. 1193

    4821

    8971

    5399

    95

    Returns: 1

  46. 8481

    1955

    8389

    6373

    6

    Returns: 44

  47. 1407

    7883

    5839

    3727

    3

    Returns: 534

  48. 2871

    5689

    6367

    2879

    7

    Returns: 49

  49. 1860

    5129

    8053

    2477

    4

    Returns: 32

  50. 4213

    7596

    6217

    9043

    4

    Returns: 93

  51. 8573

    7998

    8163

    9929

    85

    Returns: 1

  52. 284

    9496

    5709

    2789

    22

    Returns: 2

  53. 8729

    6922

    249

    199

    55

    Returns: 0

  54. 8575

    2369

    3691

    6469

    59

    Returns: 2

  55. 8935

    5079

    5965

    7237

    29

    Returns: 35

  56. 8595

    7701

    2140

    7109

    721

    Returns: 1

  57. 5003

    8515

    5218

    3373

    499

    Returns: 1

  58. 7694

    7230

    1381

    5881

    57

    Returns: 1

  59. 8870

    3487

    1596

    761

    909

    Returns: 0

  60. 8615

    6655

    1021

    5279

    9043

    Returns: 0

  61. 6806

    7494

    3142

    3727

    5126

    Returns: 0

  62. 4594

    555

    3843

    3359

    968

    Returns: 1

  63. 3497

    9723

    4549

    9601

    1180

    Returns: 1

  64. 1

    1

    1

    2

    2

    Returns: 1

  65. 1

    1

    1

    2

    3

    Returns: 0

  66. 10000

    2724

    6398

    1

    2

    Returns: 10000

  67. 9986

    43

    2778

    8376

    3

    Returns: 4986

  68. 9905

    2695

    6990

    9837

    4

    Returns: 3279

  69. 9795

    1

    2750

    9657

    8

    Returns: 1343

  70. 8088

    1569

    9611

    9605

    16

    Returns: 565

  71. 3827

    7591

    7802

    9471

    32

    Returns: 287

  72. 9013

    6513

    6660

    9472

    64

    Returns: 148

  73. 707

    7181

    531

    9715

    138

    Returns: 67

  74. 6583

    7421

    3500

    9695

    268

    Returns: 35

  75. 9263

    3760

    1579

    9104

    529

    Returns: 16

  76. 965

    3913

    5928

    9496

    1154

    Returns: 8

  77. 7083

    4889

    4508

    9484

    2102

    Returns: 4

  78. 5777

    6648

    4577

    8986

    4458

    Returns: 2

  79. 6945

    1904

    8230

    8753

    8595

    Returns: 1

  80. 4765

    5081

    7951

    10000

    10000

    Returns: 1

  81. 10000

    10000

    508

    9999

    10000

    Returns: 1

  82. 1000

    2

    999

    1000

    3

    Returns: 1

  83. 7

    9

    67

    5

    10000

    Returns: 0

  84. 1

    1

    1

    9999

    8888

    Returns: 1

  85. 555

    10000

    999

    9999

    10000

    Returns: 0

  86. 99

    2

    3

    100

    2

    Returns: 98

  87. 57

    35

    35

    1

    2

    Returns: 57

  88. 10

    10

    10

    100

    2

    Returns: 0

  89. 100

    100

    100

    100

    2

    Returns: 100

  90. 1

    9000

    1

    10000

    2

    Returns: 9000

  91. 1

    1234

    2

    5555

    2

    Returns: 1235

  92. 1

    1

    1

    100

    2

    Returns: 1

  93. 5

    6

    7

    10

    10

    Returns: 0

  94. 3

    7

    1

    101

    2

    Returns: 19

  95. 2

    1

    3

    2

    2

    Returns: 1

  96. 575

    5245

    445

    5646

    10

    Returns: 40

  97. 2

    1

    4

    5

    2

    Returns: 1


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: