Problem Statement
Definition
- Class:
- DivisibleByDigits
- Method:
- getContinuation
- Parameters:
- int
- Returns:
- long
- Method signature:
- long getContinuation(int n)
- (be sure your method is public)
Notes
- An integer A starts with an integer B if the string representation of B is a prefix of the string representation of A (both in decimal notation with no leading zeroes).
Constraints
- n will be between 1 and 1000000000, inclusive.
Examples
13
Returns: 132
We need a number that starts with 13 and is divisible by 1 (always true) and by 3. The smallest one is 132.
648
Returns: 648
If n is divisible by all its non-zero digits, the answer to the problem is n itself.
566
Returns: 56610
The resulting number must be divisible by 5, so it should end either with 0 or with 5. But a number ending with 5 is odd and can't be divisible by 6. So the last digit of the answer must be 0. In order to make the number divisible by 6, we need to put something before this 0, and the smallest appropriate digit is 1.
308
Returns: 30816
191
Returns: 1917
1000000000
Returns: 1000000000
64348557
Returns: 64348557000
987654321
Returns: 987654321360
123456789
Returns: 1234567890360
1
Returns: 1
2
Returns: 2
9
Returns: 9
10
Returns: 10
12
Returns: 12
14
Returns: 140
17
Returns: 175
74
Returns: 7420
98
Returns: 9864
108
Returns: 1080
345
Returns: 34500
397
Returns: 39753
491
Returns: 49104
777
Returns: 777
1078
Returns: 107800
1245
Returns: 124500
1279
Returns: 1279026
1583
Returns: 1583040
1759
Returns: 1759275
1765
Returns: 1765050
7185
Returns: 7185080
7298
Returns: 7298424
23497
Returns: 23497236
47259
Returns: 472590720
5789
Returns: 57891960
7589
Returns: 75892320
19758
Returns: 197580600
28759
Returns: 287592480
44957
Returns: 449570520
200508709
Returns: 2005087092120
314159265
Returns: 31415926500
314167958
Returns: 3141679582440
314169578
Returns: 3141695781000
464597508
Returns: 4645975080600
464597517
Returns: 4645975170060
504604188
Returns: 5046041880
604070913
Returns: 6040709136
704060432
Returns: 70406043204
774378549
Returns: 774378549000
812341512
Returns: 8123415120
825473880
Returns: 825473880
833330001
Returns: 8333300016
833333759
Returns: 8333337592440
844444597
Returns: 8444445972480
931394757
Returns: 9313947570060
934330293
Returns: 93433029300
999252999
Returns: 9992529990
999585999
Returns: 999585999000
999909999
Returns: 999909999
999999991
Returns: 9999999918
999999992
Returns: 99999999216
999999997
Returns: 99999999729
999999999
Returns: 999999999
83
Returns: 8304
346258971
Returns: 3462589710720
907678453
Returns: 9076784532480
56789
Returns: 567892080
147
Returns: 14700
950030021
Returns: 95003002170
782343
Returns: 782343072
999999750
Returns: 999999750015
310
Returns: 3102
234567890
Returns: 2345678901720
21
Returns: 210
19
Returns: 198
6214
Returns: 62148
27
Returns: 2702
999000587
Returns: 9990005870880
9010
Returns: 90108
77996611
Returns: 7799661198
19783465
Returns: 197834651280
25
Returns: 250
987577770
Returns: 9875777700600
334
Returns: 3348
927316845
Returns: 927316845000
58
Returns: 5800
46
Returns: 468
925483158
Returns: 92548315800
752752752
Returns: 75275275250