Problem Statement
A lucky ticket is an integer with exactly 2*n digits (written without leading zeroes), where the sum of the leftmost n digits is equal to the sum of the rightmost n digits.
You are given a
Definition
- Class:
- LuckyTicketSubstring
- Method:
- maxLength
- Parameters:
- String
- Returns:
- int
- Method signature:
- int maxLength(String s)
- (be sure your method is public)
Constraints
- s will contain between 1 and 50 characters, inclusive.
- s will contain non-zero digits ('1'-'9') only.
Examples
"123231"
Returns: 6
The entire string, 123231, is a lucky ticket because the first 3 digits sum up to 1+2+3=6, and the last 3 digits sum up to 2+3+1=6.
"74233285"
Returns: 4
4233 is the longest lucky ticket here.
"986561517416921217551395112859219257312"
Returns: 36
"12345678986987654321123456789359876543211234567895"
Returns: 32
"1"
Returns: 0
"333"
Returns: 2
"23"
Returns: 0
"112"
Returns: 2
A lucky ticket must contain an even number of digits.
"33112321321321313213123213213213231323123211232121"
Returns: 50
"11178537359954626351226312697414325288127964296"
Returns: 44
"5835379471913726788872553377866967438276853224256"
Returns: 46
"93189284642331479989688422615272657491328525264915"
Returns: 36
"84768681396688156516686398798382834931358195759"
Returns: 44
"6631398633671535148112635632232895245265459176278"
Returns: 40
"38194879498391342622196735661826539989497482524"
Returns: 30
"98955592368299428515452817997113992371773713336"
Returns: 44
"22912258674523548849358515592493787865592955712"
Returns: 32
"69732648345152728943246953871181848886594696676"
Returns: 30
"67722275835625314863189374573389883452488454396"
Returns: 28
"59122739423292665836621349372635191955555471468292"
Returns: 40
"1178537359954626351226312697414325288127964296"
Returns: 44
"6656685678688985689959856697679877686588675598"
Returns: 40
"6977666776697868866976696998777668767676696999"
Returns: 40
"94598476598796698545657998999579568859796498576"
Returns: 32
"89799979989999778987787789989988988988788987897798"
Returns: 46
"99899988888998989989998998999888988889898998989"
Returns: 38
"788897877999887998997979899977989899898978797997"
Returns: 44
"55566757677657677656677567755557666665657756775667"
Returns: 36
"35333535345344434445533455553354435445443445455345"
Returns: 44
"57567755577677665667566567655757666666757567655767"
Returns: 48
"66665545654665666546565556466465546545646664665666"
Returns: 42
"23432232234434433433433233432342243234432423242434"
Returns: 50
"3"
Returns: 0
"11"
Returns: 2
"112"
Returns: 2
"2313"
Returns: 0
"23341"
Returns: 2
"323321"
Returns: 4
"2233123"
Returns: 2
"31111322"
Returns: 6
"986561517416921217551395112759219257312"
Returns: 36
"7"
Returns: 0
"111111"
Returns: 6
"555"
Returns: 2
"12356467567634998"
Returns: 12
"12361"
Returns: 0
"123"
Returns: 0
"123213"
Returns: 6
"2111111112"
Returns: 10
"1654646"
Returns: 4
"3216542158963258745695896321458789632589632589652"
Returns: 48
"112999"
Returns: 2
"7647631234115362517357"
Returns: 8
"212"
Returns: 0
"9865615174169212171212121212"
Returns: 8
"744233456256812536"
Returns: 18
"8764376876373464215621738991"
Returns: 18
"99999999999999999999999999999999999999999999999999"
Returns: 50
"4563456567356"
Returns: 6
"12334566546456345345345645"
Returns: 16
"123321"
Returns: 6
"91111"
Returns: 4
"651"
Returns: 0
"15141"
Returns: 0
"712312346"
Returns: 6
"1111331223"
Returns: 8
"44"
Returns: 2