Statistics

Problem Statement for "ProperDivisors"

Problem Statement

An integer k greater than 0 is called a cool divisor of m if it is less than m and divides m, but k^n does not divide m. Let d(m) denote the number of cool divisors that exist for an integer m. Given two integers a and b return the sum d(a) + d(a + 1) + ... + d(a + b).

Definition

Class:
ProperDivisors
Method:
analyzeInterval
Parameters:
int, int, int
Returns:
int
Method signature:
int analyzeInterval(int a, int b, int n)
(be sure your method is public)

Notes

  • The result will always fit into a signed 32-bit integer.

Constraints

  • a will be between 1 and 1000000 (10^6), inclusive.
  • b will be between 1 and 10000000 (10^7), inclusive.
  • n will be between 2 and 10, inclusive.

Examples

  1. 32

    1

    3

    Returns: 5

    The cool divisors of 32 are 4, 8 and 16 so d(32) = 3; the cool divisors of 33 are 3 and 11 so d(33) = 2. Hence the desired sum d(32) + d(33) = 3 + 2 = 5.

  2. 1

    12

    2

    Returns: 8

  3. 1000000

    10000000

    10

    Returns: 146066338

  4. 1000000

    10000000

    5

    Returns: 145707011

  5. 1

    1

    10

    Returns: 0

  6. 1000000

    10000000

    2

    Returns: 139630317

  7. 256

    1

    8

    Returns: 6

  8. 76

    241

    7

    Returns: 1051

  9. 25

    481

    5

    Returns: 2171

  10. 77

    237

    2

    Returns: 897

  11. 80

    528

    5

    Returns: 2559

  12. 95

    801

    4

    Returns: 4121

  13. 33

    460

    5

    Returns: 2077

  14. 68

    188

    3

    Returns: 757

  15. 18

    46

    2

    Returns: 108

  16. 2

    655

    4

    Returns: 3000

  17. 13

    930

    2

    Returns: 4147

  18. 18

    23

    7

    Returns: 60

  19. 33

    645

    5

    Returns: 3095

  20. 56

    34

    9

    Returns: 124

  21. 32

    697

    8

    Returns: 3414

  22. 60

    40

    3

    Returns: 144

  23. 23

    227

    5

    Returns: 883

  24. 4

    492

    6

    Returns: 2166

  25. 8

    706

    10

    Returns: 3378

  26. 95

    744

    10

    Returns: 3839

  27. 16

    217

    3

    Returns: 785

  28. 33

    669

    9

    Returns: 3258

  29. 2063

    31790

    6

    Returns: 278126

  30. 136

    33591

    10

    Returns: 288948

  31. 9715

    57300

    4

    Returns: 545073

  32. 2123

    89026

    2

    Returns: 803335

  33. 3772

    17425

    2

    Returns: 136822

  34. 4565

    79739

    10

    Returns: 770484

  35. 4854

    37177

    8

    Returns: 337520

  36. 6293

    33607

    2

    Returns: 284179

  37. 2612

    79478

    3

    Returns: 745659

  38. 7376

    29801

    5

    Returns: 269443

  39. 8342

    97317

    6

    Returns: 965666

  40. 8452

    90781

    8

    Returns: 897383

  41. 2915

    49955

    6

    Returns: 458682

  42. 6631

    44593

    10

    Returns: 414791

  43. 7520

    20703

    3

    Returns: 179741

  44. 5453

    44995

    5

    Returns: 414695

  45. 4715

    73754

    10

    Returns: 708291

  46. 6409

    36882

    5

    Returns: 336559

  47. 7303

    87584

    10

    Returns: 860793

  48. 9534

    54527

    5

    Returns: 519000

  49. 282499

    2413

    10

    Returns: 28239

  50. 570551

    5440141

    7

    Returns: 76173349

  51. 818936

    1919226

    4

    Returns: 25736733

  52. 542079

    3570232

    7

    Returns: 48852298

  53. 43959

    9287861

    2

    Returns: 126168618

  54. 896415

    7577294

    3

    Returns: 107374885

  55. 618745

    4921657

    2

    Returns: 65522750

  56. 297360

    954291

    3

    Returns: 11871712

  57. 698735

    9276167

    10

    Returns: 134219467

  58. 438626

    2729469

    7

    Returns: 36663471

  59. 506878

    2729424

    5

    Returns: 36715498

  60. 566290

    898966

    7

    Returns: 11634824

  61. 227177

    7901290

    8

    Returns: 111914619

  62. 352823

    4804748

    2

    Returns: 63244619

  63. 406067

    449339

    4

    Returns: 5573981

  64. 60173

    8645346

    9

    Returns: 122474390

  65. 549084

    9278832

    7

    Returns: 133777741

  66. 429413

    806914

    8

    Returns: 10280643

  67. 100368

    9604230

    4

    Returns: 136456858

  68. 944525

    9999760

    7

    Returns: 145854621

  69. 904376

    9999520

    5

    Returns: 145466065

  70. 959824

    9999764

    2

    Returns: 139529868

  71. 909621

    9999473

    5

    Returns: 145478423

  72. 973806

    9999200

    4

    Returns: 145177767

  73. 980468

    9999541

    5

    Returns: 145653011

  74. 904433

    9999813

    3

    Returns: 143819454

  75. 928883

    9999955

    2

    Returns: 139456772

  76. 912999

    9999346

    4

    Returns: 145030855

  77. 921788

    9999071

    2

    Returns: 139426278

  78. 1

    10000000

    2

    Returns: 136280624

  79. 1

    10000000

    5

    Returns: 142356103

  80. 1

    10000000

    8

    Returns: 142684598

  81. 537695

    5376956

    5

    Returns: 75009840

  82. 100000

    10000000

    10

    Returns: 143276440

  83. 97

    9999999

    3

    Returns: 140706252

  84. 1

    10000000

    7

    Returns: 142641878

  85. 1

    10000000

    10

    Returns: 142715423

  86. 999999

    9999990

    9

    Returns: 146056082

  87. 99999

    999999

    7

    Returns: 12296705

  88. 787878

    10000000

    3

    Returns: 143524980

  89. 2

    10000000

    6

    Returns: 142551958

  90. 1000000

    9999999

    9

    Returns: 146056106

  91. 999951

    9188771

    9

    Returns: 133621562

  92. 934234

    9123756

    9

    Returns: 132473466


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2024, TopCoder, Inc. All rights reserved.
This problem was used for: