Problem Statement
Assuming optimal play, what is the maximum expected score for a given N and K?
Definition
- Class:
- Collect
- Method:
- expected
- Parameters:
- int, int
- Returns:
- double
- Method signature:
- double expected(int N, int K)
- (be sure your method is public)
Notes
- If you elect not to reroll a die in one round, you may not reroll it in any subsequent round.
Constraints
- N will be between 1 and 10, inclusive.
- K will be between 1 and 100, inclusive.
Examples
1
1
Returns: 3.5
Rolling 1 die once gives an expected value of 3.5.
1
2
Returns: 4.249999999999999
If you can roll twice, you should keep a 4, 5, or 6 on the first round, and reroll a 1, 2, or 3. Thus, half the time you'll reroll and expect 3.5, while the other half the time you'll expect to get a 5 (the average of 4, 5 and 6). Thus, the overall expected value is (3.5+5)/2 = 4.25
2
2
Returns: 6.262345679012343
On the first roll, lock both if you have two threes or better. Otherwise keep the higher of the two dice if it is over 3. Otherwise, reroll both.
1
1
Returns: 3.5
1
2
Returns: 4.249999999999999
1
3
Returns: 4.666666666666666
1
4
Returns: 4.944444444444444
1
5
Returns: 5.12962962962963
1
6
Returns: 5.2746913580246915
1
7
Returns: 5.395576131687243
1
8
Returns: 5.496313443072702
1
9
Returns: 5.580261202560585
1
10
Returns: 5.6502176688004875
2
1
Returns: 5.055555555555555
2
2
Returns: 6.262345679012343
2
3
Returns: 7.100051440329217
2
4
Returns: 7.765453532235938
2
5
Returns: 8.32417350156226
2
6
Returns: 8.82409749212518
2
7
Returns: 9.269012811393925
2
8
Returns: 9.658650239984302
2
9
Returns: 9.995931205498351
2
10
Returns: 10.285387415663653
3
1
Returns: 6.305555555555557
3
2
Returns: 8.179140946502056
3
3
Returns: 9.617161898910222
3
4
Returns: 10.76037900924973
3
5
Returns: 11.76010260471904
3
6
Returns: 12.651637093534129
3
7
Returns: 13.432240108671825
3
8
Returns: 14.104049699784603
3
9
Returns: 14.690360371841328
3
10
Returns: 15.202539717550376
4
1
Returns: 7.527777777777772
4
2
Returns: 10.130036865569272
4
3
Returns: 12.146952769098558
4
4
Returns: 13.796605642797712
4
5
Returns: 15.238061079961824
4
6
Returns: 16.518082427824375
4
7
Returns: 17.624976735942408
4
8
Returns: 18.598673176735577
4
9
Returns: 19.445776809976252
4
10
Returns: 20.17470271523939
5
1
Returns: 8.753858024691368
5
2
Returns: 12.069049810591629
5
3
Returns: 14.658863374242731
5
4
Returns: 16.796697501416258
5
5
Returns: 18.7123884162782
5
6
Returns: 20.385843893707193
5
7
Returns: 21.85277944061418
5
8
Returns: 23.133896871369494
5
9
Returns: 24.236377303704206
5
10
Returns: 25.17721144822596
6
1
Returns: 9.976466049382726
6
2
Returns: 13.977001332116638
6
3
Returns: 17.140890496142333
6
4
Returns: 19.808930872675422
6
5
Returns: 22.19734389213186
6
6
Returns: 24.273311622171306
6
7
Returns: 26.111899492813592
6
8
Returns: 27.693256289816784
6
9
Returns: 29.04790099534485
6
10
Returns: 30.19516357572349
7
1
Returns: 11.180905635573874
7
2
Returns: 15.86124300724142
7
3
Returns: 19.61347534338498
7
4
Returns: 22.843812522511303
7
5
Returns: 25.68943640121636
7
6
Returns: 28.20284981681153
7
7
Returns: 30.38606264899786
7
8
Returns: 32.27169701047571
7
9
Returns: 33.8730860708382
7
10
Returns: 35.2208845430909
8
1
Returns: 12.360391899100694
8
2
Returns: 17.727708416959647
8
3
Returns: 22.079067183852846
8
4
Returns: 25.876811069203157
8
5
Returns: 29.186658374022915
8
6
Returns: 32.138530530918736
8
7
Returns: 34.68218518430872
8
8
Returns: 36.860305910320356
8
9
Returns: 38.70370256036377
8
10
Returns: 40.24945757617778
9
1
Returns: 13.513727244798856
9
2
Returns: 19.578731166983065
9
3
Returns: 24.54400046630214
9
4
Returns: 28.907689893075926
9
5
Returns: 32.725896538218905
9
6
Returns: 36.08184079534306
9
7
Returns: 38.98527576516397
9
8
Returns: 41.45613652030628
9
9
Returns: 43.53778701811308
9
10
Returns: 45.2794545382755
10
1
Returns: 14.645377772856191
10
2
Returns: 21.421395316158353
10
3
Returns: 27.022207211024874
10
4
Returns: 31.943623609678664
10
5
Returns: 36.26972024765426
10
6
Returns: 40.04080822440012
10
7
Returns: 43.29227117637948
10
8
Returns: 46.05420296352534
10
9
Returns: 48.37321148985555
10
10
Returns: 50.30997381251698
9
32
Returns: 53.842022991258915
9
37
Returns: 53.936512583292405
9
87
Returns: 53.99999302369629
9
24
Returns: 53.320727778559935
9
63
Returns: 53.99944540588239
9
28
Returns: 53.6724188746753
9
83
Returns: 53.999985533937746
9
26
Returns: 53.52828317953664
9
54
Returns: 53.99713841616867
9
24
Returns: 53.320727778559935
10
32
Returns: 59.82446999028846
10
37
Returns: 59.92945842588096
10
87
Returns: 59.99999224855147
10
24
Returns: 59.24525308725432
10
63
Returns: 59.999383784313544
10
28
Returns: 59.63602097186159
10
83
Returns: 59.999983926597416
10
26
Returns: 59.47587019948096
10
54
Returns: 59.9968204624101
10
24
Returns: 59.24525308725432
2
37
Returns: 11.9859035265378
7
24
Returns: 41.47167716663245
5
28
Returns: 29.818010560019825
7
26
Returns: 41.633109140717416
4
24
Returns: 23.698112422787872
3
55
Returns: 17.999205117706875
8
34
Returns: 47.90248332793756
8
30
Returns: 47.797789428813196
6
62
Returns: 35.9995563247059
3
20
Returns: 17.53156407069376
5
62
Returns: 29.999630270588238
7
14
Returns: 38.7288173495781
1
68
Returns: 5.999991061068747
1
75
Returns: 5.999997505308339
1
54
Returns: 5.999885231411142
3
71
Returns: 17.999957006383948
8
79
Returns: 47.99997333615378
6
92
Returns: 35.999998130920034
8
44
Returns: 47.98425051303703
8
81
Returns: 47.999981483439804
10
100
Returns: 59.99999927551891
10
99
Returns: 59.999999130623515